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Convergence to Strange Long-Period Positions

Richard Goodwin

Convergence means dynamical stability and it has usually meant
asymptotic convergence to a fixed point, either monotonically or cyclically.
Hence one could discuss relative fixed prices and outputs with the
assumption that the economy was either there or approaching them. These
fixed points obviously must shift gradually over time, as a result of technical
change and demography.

Much of economic analysis has therefore been concerned with stable
equilibrium to a fixed point. Our range of possible dynamics was dramatically
enlarged about a century ago by Poincaré’s idea of a limit cycle, but with
little effect on economics. Thus Kalecki half a century ago, produced the
first mathematical model (linear) of economic cycles, and was criticized by
Frisch for choosing a point in his parameter space on the boundary between
stability and instability, thus achieving a kind of neutral stability to explain
the continued existence of cycles for a couple of centuries. Frisch maintained
that the problem had to be solved by stability to a fixed point, but kept
alive by exogenous shocks. This had the added advantage of explaining
the evident irregularity of the cycles. Frisch like Kalecki, Hansen,
Samuelson, Metzler and others, formulated a linear system, but he should
have known better, since already a decade earlier, van der Pol had solved
the problem by using a cubic, 7.e. a nonlinear, relation, thus achieving an
explanation of limit cycles. This formulation uses an unstable fixed point
but has a nonlinearity for large movements, which bifurcates the system
from local instability to global stability for large movements.

This basic discovery continued, until recently, to have no influence
whatsoever on economics — with the curious exception of a brilliantly
original, quite unmathematical article by the late Lord Kaldor. Then in
the 1960’s one E. N. Lorenz, a pupil, of Birkoff, made the dramatic
discovery of ‘strange attractors’ or chaos (significantly with the help of
computers). This constituted a remarkable addition to our ways of thinking
about complicated, irregular events, like the behaviour of a bush or tree
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in the wind. Such a nonlinear model is stable not to a fixed point, nor to
a limit cycle, but to a determinate region within which it can have an
unlimited variety of irregular trajectories, monotonic and cyclical, stable
and unstable. Since it is a deterministic system, which is, nonetheless,
unpredictable, it seems to imply a logical and mathematical contradiction.
Naturally it hass aroused much interest and analysis mathematically, but
very little economically.

It must be added that there is as yet little substantial empirical economic
evidence of this phenomenon in economic statistics. Nonetheless, because
of the superficial resemblance of chaotic time series to economic time series,
I remain convinced that nonlinear attractors are a significant addition to
our understanding of economic dynamics. The problem is a difficult one,
since as a result of chaotic theory, now there are two, not one, possible
explanations of the highly erratic bahaviour of economic time series —
exogenous shocks and strange attractors. It is difficult to determine how
much of the irregularity is attributable respectively to each source, since
the shocks, being exogenous, are unspecified and hence, can, so to speak,
explain anything, and hence everything.

Therefore, in spite of its newness and somewhat feeble empirical support,
I find this fascinating, and obviously rather basic conception immensely
attractive and a potentially powerful and appropriate tool for economic
analysis. Consequentially what I propose to do is to give some examples
to illustrate how it could function in an extremely simplified, rather abstract
economic model. ‘

I take a simple, linear cycle model stated in ratios, hence independent
of scale, which allows it to be a growth cycle. v is the ratio of employment
to a constant labour force; # is the proportion of wages in net national
product, which consists solely of wages and profits:

v=—du +f
4=+ hv,

with f representing a destabilizing element, e. g. the accelerator; the model
then is an unstable cycle. To this is added a dynamically variable control
parameter, z, in the manner of the so-called Rossler Band. The simplest
economic explanation of z is that it represents the variation in net public
deficits or surpluses: 7 negative represents a deficit with a positive effect
on output and employment, and conversely for a surplus. This is because
of the familiar fact that a large part of public expenditure is substantially
independent of tax receipts (e. g.) administration, armed forces, police, and
may even vaty inversely, e.g. unemployment benefits and other public
assistance). v is measured in deviations from a point, v*, of 90%. Then
¥=b +gzlv — ), so that, if ¢ = 0.05, when unemployment is less than
5%, public surpluses are increasing, leading to a progressive downward
pressure on employment and output; with unemployment greater than 5%,
the opposite upward pressure occuts.
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Given an unstable cycle, the usual solution, following Poincaré and van
der Pol, is to assume upper and lower nonlinearities, yielding global stability
and at least one closed, stable, limit cycle. Just as Poincaré generalized the
concept of possible equilibrium from a fixed point to a closed curve of
motion, Lorenz succeeded in generalizing the closed curve to a bounded,
closed region, in which an astonishing variety of ever-changing, aperiodic
motions can occur in a seemingly erratic fashion. The upper and lower
nonlinearities are replaced by a single, dynamical control parameter which
provides, as necessaty, either growing downward pressure or a growing
upward one.

Introducmg structural change in the form of a logistic growth over 50
years in innovative capacity, one gets, for a variety of initial conditions,
the behaviour shown in Fig. 1. Chaotic attractors exhibit a great range
of types of motion, dependent on initial conditions, so that they can be
adapted to whatever is the degree of endogenous irregularity in economics.
To demonstrate this, it is helpful to use the simplest, dimensionless model,
thus:

D= —u -2,
u= +v +au,
= +b +z0v —o.

My aim is to illustrate the gradual onset of chaotic solutions as one
parameter, ¢, is varied (with ¢ = b = 0.20). With ¢ = 2.2, the result is a
single limit cycle (Fig. 2); it is asymptotically stable but in an unusual way
for an initial condition outside the cycle. This behaviour gradually
complicates as ¢ is increased. For.c = 3.0, the periods are doubled (Fig.

3). To illustrate the period doubling approach to chaos, an increase of ¢
to 3.7 doubles the doubled periods (Fig. 4). In Fig. 5 increasing ¢ to 4.2
has further increased the number of succeedmg cycles. With ¢ = 5.0 (Fig.

6) there are a great many bands, each containing a subset of slightly aperiodic
cycles, so that the multiplicity of bands indicates totally unperiodic
behaviour, which results in bounded but highly irregular trajectories in time.
Higher values of ¢ would substantially fill the whole interior of the bounded
region. Thus there is convergence to an infinity of long period positions.
This stable bounded region of ever varying economic quantities seems to
me to give a satisfactory conception of the relation of short-period market
prices or outputs to long-period prices or outputs. Short periods breed -
succeeding short periods and the collection of them constitutes the long
period. Thus it is a unified theory of both short and long run positions,
which is endogenous and deterministic but unpredictable.

Without independent knowledge, one could not extract the model from
the time series it generates, nor could one predict the future from the past.
Thus though the end state seems quite bizatre, it has been produced by
successive steps in varying a single parameter, which has dramatically
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illustrated an astonishing generalization of stable motion: from a fixed point
to a fixed motion and finally to a whole bounded, attracting region of non-
wandering, non-repeating trajectories. Consequentlv, now one has always
to consider that there may be two, not just one, possible sources of erratic
behaviour in economic time series.

To come closer to the reality of long period positions, the model needs
to incorporate inhovational investment in new capacity, producing the rising
productivity. The complete, aggregative model then becomes

V= —du -ez,
0= +hv+fu,
i= +b +glv —o),

glg=(—du —e)/lv +0.90 +m(G +mw)(1 —sk),
=G +m)k(l - sk),

where & represents new, innovative capacity. Choosing plausible parameter
values and appropriate initial conditions, the results are shown in Fig. 7.

The two variables, # and v, are shown as functions of time under the
influence of a 50 year logistic of innovations in Fig. 8. The strongly erratic
trajectories of both output and employment are clearly exhibited in both
Fig. 7 and in Fig. 8.

Employment is limited by the assumption of a constant labour force,
but rising productivity produces a variable growth rate of output.

These examples appear to me to exhibit the generic character of the
non-repeating figures one finds in economic time series. Whilst awaiting
more convincing empirical evidence of such nonlinear, endogenous
irregularity, I believe that this kind of behaviour is important in economic
analysis. It is, of course, essential to include also the perturbations of
exogenous shocks.

Dipartimento di Economia Politica, Universitd di Siena.
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