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Market Prices and Natural Prices:
A Model with a Value Effectual Demand

Ingrid Kubin

I. INTRODUCTION

Thirty years ago, Piero Sraffa published his ‘Production of Commodities
by Means of Commodities’, a slender book of about 120 pages. It led to
a revival of the classical approach to the theory of value and distribution
and a renewed interest in the economists of the late eighteenth and early
nineteenth century, most prominently among them Adam Smith and David
Ricardo. In the first years after the publication of the book the debate
concentrated on the criticism of the ‘neoclassical’ economic theory, as already
indicated in the subtitle of Sraffa’s book ‘A Prelude to the Critique of
Economic Theory’. It centered on questions of production, capital and
distribution theory. Only in the Seventies an attempt had been made to
develop a coherent positive theory on this basis.

The relation between natural prices and market prices is essential for
such a positive theory, but is still a rather controversial and unsettled topic
in the discussione among the ‘neo-Ricardians’ (cf. e. g. the models of Nikaido,
1983, 1985, Duménil/Lévy, 1987, 1988, 1989, Hosoda, 1985, Boggio, 1985
and Flaschel/Semmler, 1987 and the discussion of Steedman, 1984,
Arena/Torre, 1986). According to a widespread opinion that can be traced
back to Smith, market prices are seen to gravitate to or around natural
prices. The gravitation is usually considered as being engendered by the
classical process of competition. If the supply in one sector is too small
relative to demand, the respective market price and the respective sectoral
rate of profit are supposed to rise. The positive change in the rate of profit
attracts capital towards the sector under consideration. The supply is
increased and the original ‘disequilibrium’ reduced.

The central issue of the following paper is the seemingly simple question
whether market price formation according to market disequilibria and capital
reallocation, guided only by information about the sectoral market rates
of profit, can be sufficient to substantiate the role of natural prices as centers
of gravitation for market prices. This is not as obvious as it might seem.
It is the classical conception of production which introduces one potentially
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destabilizing element. This approach typically uses produced inputs to
substantiate the notion of capital. Sectots are technologically interdependent
and this causes specific problems for the capital reallocation process. A shift
of productive capacity not only changes the supply in the various sectors,
but at the same time the demand (for input use) in the same sectors. It
is on the problems which arise from this technological interdependency
between sectors that the emphasis of the present work rests.

The following paper provides a formal model to substantiate this allusive
picture of gravitation. It combines the central stabilizing and the central
destabilizing component as delineated above and it is based on the idea
that the different components of demand are subject to specific constraints.
It is shown that the ‘natural solution’ conceptualized by Sraffa prices and
a steady growth path is a fixed point solution for the specified model
dynamics. An (economically meaningful) range for the coefficient of
adaptation exists which renders the fixed point locally asymptotically stable.
At the limiting value for this coefficient of adaptation the time path
undergoes a Hopf or eventually a flip bifurcation.

2. THE MODEL SPECIFICATION

2.1. Introduction

The natural solution is given by Sraffa prices and a steady state growth
path. The (equilibrium) growth rate is given by the long-term expectations
of producers which are assumed to be equal for the different sectors (and
which are eventually influenced by the interest rate of financial capital).

The model for the disequilibrium dynamics is specified in discrete time
with the production period structuring time. At the beginning of each
production period the market processes evolve. The model depicts these
market processes, which determine market prices and market quantities
as a result of the confrontation between the quantity supplied to the market
and the quantity demanded for input purposes and for final consumption.
Without considering inventories the quantity supplied to the market is
simply the quantity produced in the previous period. The behavior of the
two components of demand derives from an essential asymmetry in the
perceived constraints, especially in the possibility of short term financing.!

The demand for input purposes is based on short-term production plans.
Short-term expectations modify the longterm expectations and are formed
according to differences in the realized sectoral market rates of profit.
Therefore, production (and accumulation) plans in the short-term do not

! This emphasis on the access to short-term finance corresponds to the concepts put forward
by BeENETTI/CARTELIER, 1980,
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coincide with the long term growth path. The planned production implies
an input demand which reflects the shift of productive capacity between
the two sectors (according to the sectoral rates of profit). In the model,
producers are subject to soft budget constraints (because implicitly assuming
that they have easy access to short term finance), but to (subectively) rigid
constraints with regard to their expectations on the sectoral quantity
development. Therefore, input demand is considered to be always satisfied
in quantity terms, though possibly rationed in value terms.

The other component of demand is that for final consumption. A strict

classical savings behavior is assumed to prevail.
Profit income is entirely saved. Changes in this supply of financial capital
do not directly influence the production sector, but only indirectly through
the long term expectations. (This relation, however, is not analyzed in the
following paper.)

Workers’ consumption is not included in the technology matrix. At the
end of the production period, money wages are paid, which are entirely
and immediately spent in the commodity market. Workers are assumed
to be subject to a rigid budget constraint, because they do not have access
to short term finance. For simplicity, it will be assumed that the composition
of consumption is exogenously given and constant over. time. The level of
consumption, however, will vary with the level of (actual) employment.

The allocation of the quantity brought to the market directly follows
from the assumption that input demand is satisfied in quantity terms. This
mechanism controls the quantity path of the (market) quantities. Market
prices ultimately depend on the comparison between the quantity supplied
to the market minus the input demand and the value demand for final
consumption.

Market prices, in their turn, imply specific values for the market rates
of profit, which guide the next decision on input demand and interconnect
the market processes taking placé in successive points of time.

The paper focuses on the question whether such a market price dynamics
describes a ‘process of gravitation’. I try to use the most simple model
specification which will still allow an answer to this question. Therefore
only two production sectors are specified. Both commodities are assumed
to serve input and consumption purposes. They are produced by using the
same two commodities, though in different proportions, and labor as input.
No fixed capital, no joint production, and no changes of technique are
allowed for. Producers do not differ within a particular sector; instead,
we assume one representative producer for each sector. Labor market
interactions are not taken into consideration; it is assumed that they do
not directly influence the reallocation process between the sectors.?

2 The implicit assumption is that for ‘small’ labor market variations the labor supply is elastic
(also because of the existence of unemployment or overtime work) and that ‘fundamental’ labor
market disequilibria would induce technical changes (which are beyond the scope of the present
analysis), cf. also ScHEFOLD, 1979, 187.
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Using the money wage rate as numéraire, market prices are expressed
as labor commanded prices. :

The proposed model shows some distinctive features in comparison to
models found in the literature. The determination of the level of market
prices by the principle of effectual demand interpreted in value terms was
first suggested by Benetti (1979, 1981) and later implicitly taken up by
Nikaido (1983, 1985, cf. for a discussion, Kubin, 1989, 1991). In contrast
to the former, the present model specifies a Ricardian variant of the process
with an interdependent production technology and production prices as
the natural price solution. In contrast to the latter, it considers input demand
as satisfied in quantity terms. In contrast to both interpretations the present
one does not assume the value of the effectual demand to be given
exogenously, but relates it explicitly to the (money) wage payment.

2.2. The formal framework

2.2.1. The natural solution

We analyze a two sector model with a given technology matrix A (with
the elements «;), exhibiting constant returns to scale, being
indecomposable and productive. The wage is not directly included in the
technology matrix, but it is allowed for separately. Natural prices, indicated
by PN;,, therefore have to cover the replacement cost of used inputs, a
profit income distributed in proportion to the value of used capital at a
uniform rate 72, and wage income distributed post factum and in proportion
to the labor input /; (per unit of output) at a uniform rate w. These
considerations make it possible to specify the following price equations:

PN, =(a,,PN,+a,,-PN,)- (1 +m) +w-
() PN, = (a,,- PN, + ay,- PN - (1 + ) + w - [,

Choosing the wage rate as numéraire?
(2) w=1

closes one degree of freedom. Prices are then expressed as labor commanded
prices, which depend parametrically on the natural rate of profit. The natural
rate of profit, in its turn, has to be determined exogeneously and can vary
between zero and the maximum rate as given by the maximum eigenvalue
Im of the technology matrix

[~ Im

0<m <2 — e
(3) m = o7

? Therefore, questions concerning differences between the natural and the market wage
rate cannot be addressed.

178



Solving the equation system for the prices results in
[1—ay, A+ml-L+1L-ay-(1+m)
[1—ay,-A+m]-[1—ay, (L+ml—ay-ay (1+7m)?
PN, - [1—a, - (1+ml-]
ay (14 rn)

(4) PN,=

(5) PN, =

The productivity of the technology matrix is equivalent to the following
conditions (cf. Takayama, 1974, 392, theorem 4.D.2. IV’ and VT’)

@) [1—a, Q+m]-[1—ay Q+ml—a, (1+m-a, - 1+m]>0

as well as
(7) 1—ay - 1+m>0 1—dy - L+m>0

These conditions guarantee that for a natural rate of profit smaller than
its maximum value in both price equations (equ. (4) and (5)) the numerator
as well as the denominator is positive.

The gross output ratio attains its natural value (v#), if it is sufficient
to cover the replacement of used inputs, to extend the inputs by the expected
growth rate ¢ (i.e. to cover the net investment), and if the value of the
remainder, i.e. the supply to the market for consumption goods, equals
the value of the consumption demand. The latter equals the wage income,
under the (classical) assumption that wages are entirely spent (with ¢
indicating the part used for commodity 1), whereas profit income is entirely
saved.

For commodity 1, we obtain

) PN, -[XN, —a,,- XN, - (14 g) —ap,- (1 + g9 - XN,] =
=¢- (- XN, +1,- XN,)

and solving for xn
_ PNya,-(1+g)+c
©) EPN,—PN,-a,-(1+g)—c/,

(A similar relation between x# and PN, could be derived starting with
the equilibrium for commodity 2.)

The natural gross output ratio, therefore, depends on the technology
(a;; and 7), on the composition of consumption demand (c), on the planned
growth rate (g¢), and on the natural rate of profit (as contained in PN)).

The natural position is further defined by an equilibrium between savings
(i.e. the entire profit income) and (net) investment (i.e. in a model without
fixed capital the expansion of the circulating capital as measured by g°)).

(ro) mm - (PN, - a;; + PN, -a,, + PN, -a, + PN, - a,,) =
= g°. (PN, -a,; + PN, - a5, + PN, - a;, + PN, - a,,)
(11) m=g°

179



Under the assumptions that wage income is entirely spent for
consumption and the profit income is entirely saved, the natural rate of
profit equals the growth rate (in the natural position). Only one of these
variables can be determined exogenously. In our interpretation it is the
planned or expected growth rate which is determined by long term
expectations and which is therefore exogenous for the model under
consideration. In the equations for the natural price of commodity 1 (cf.
equ. (4)) and for the productivity (cf. equ. (6) and (7)), 7 can be replaced
by ge.

The productivity conditions are now open to a direct intuitive
interpretation: The system remains viable if the intended growth rate does
not exceed the available physical surplus. This is assumed to hold throughout
the model analysis.

2.2.2. The disequilibrium dynamics

We start the formal exposition by specifying the quantity dynamics.
The formation of expectations concerning future production is essential
for this part of the model. The expected long term growth rate (¢°) which
is, by assumption, common to both sectors and exogenously given, is
modified according to the perceived sectoral market rates of profit #(z).

With x(#) indicating the ratio of the sectoral gross outputs we propose
the following expressions for the planned sectoral growth rates g,(#):

(12) g@&) =g +a b, (x(®) flr,(2),n)
(13) LB =g =a b,x) flr,(t),r,1)).

‘a’ is the (positive) coefficient of adaptation and f the function of interpreting
sectoral market rates of profit subject to the following restrictions

(14) flr,=r)=0, M>O —OZQ<O.

57" 1 (t ) ’ ar 2 (t )

b,(.) measures the influence of the relative sector size, which modifies the
planning in pure growth rates in the direction of a planning in terms of
production levels (cf. for an interpretation Kubin, 1991). It exhibits the
following sectoral properties:

(15) b,(.)>0 b(1) =1
b, (.) db,(.)
(16) m <0, 9 (0) > (.

Market prices are determined by the principle of effectual demand
confronting a supply in quantity terms and a demand in value terms:

The sectoral supply §;() equals the respective gross output in the
previous period X;(# — 1) after having deducted the inputs necessary for

180



the gross output planned for period ¢.4 The gross output planned for period
¢ is the gross output in period (£ — 1) adjusted by the growth rate expected
at the end of period (#— 1), g,(#— 1) and g,(# — 1).

(17) SO=X,¢~-1)—a, - X@¢—-1)-[1+g@¢—-1]-
— - X, ~1)-[1+g,¢—1)]
(18) SH=X,t—-1)—a, X, ¢t-1)-[1+g0E—-1)]-

~ - Xt —1)-[1+ g, - 1)]

The demand in value terms refers to the money wages (paid at the rate
w at the end of the last period) which ate entirely used for consumption.
With ¢ and (1 — ¢) denoting the (exogenously given) sectoral splitting, and
with /; sectoral labor coefficients, the sectoral market prices P;(¢) result
from the following equivalence of exchange:

(r9) Pe)S@)=cw-[,-X\(t-1)+1L-X,(z—1)]
(20) Pe) - S,@)=1—c)-w- [ - X, (¢—= 1)+ L- X, (¢ = 1)]
Setting : |

(21) w=1 (numéraire),

inserting for ;) and dividing by X, (¢ — 1) ultimately leads to
_ c Ul x(@t—1)+ 1]
x(t—1)—a, -x@¢-1)-[1+g¢t—0)]—a, -[1+g@¢—- 1]
(1—¢) [/ - x@—=1)+ 7]
1~'5121'[1 +g1(t“ ] -x(t— 1)“6122'[1 +g2(t'“ 1)]

Valuing capital, 7. e. input goods, at their replacement prices, the following
equations define the sectoral market rates of profit #¢):

(22) P, (¥)

(23) P,(t) =

(24) P1(t) = [5511 : P1(t) + dél : Pz(t)] 1+ ’”1(t)] + 11
(25) P,¢)=1la, P,@) +ay P,eO)] [1+rne)]+]
_ P (t) -1, B .
(26) 7 (t) = an ' Pl (t) t 4, P2 (t) 1 with
I t)  ay-P,@t)+a, ]
27) @) T Pt +an- B OF
(28) dr (t) _ [, — P, (#)]-ay, <0 for P, (£) > 1,°

IP,(t)  [ay, - P, (t) + a, - P, (1)]?

* We are allowed to deduct this input demand because of the assumption that the input

demand is satisfied in quantity terms.
> This condition is satisfied, if the net output in each sector is at least sufficient to cover

the own labor costs.
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P,(#) -1,

(29) 72 ) :dlz‘P1 (#) + a5, - P, (2) —1 with
o @ L—=P0)] a,
5 0 e PO b PP RO
ar,(t)  a, P (t)+a,- L
G1) P, o P.0) +ay PP "

After these market processes, 7. e. the determination of the market prices
according to the principle of effectual demand, the production period
follows. Assuming that the planned input demand is always satisfied in
quantity terms, the expected growth rates of the sectoral gross output is
realized. Therefore the following expression describes the quantity
development of the system:

(52) ) == 1) g
Denoting with g{) what is common to both sectoral expectations:
(33) ge)=a-flr,@),n@)),
results in the following expressions for the sectoral growth rates
(34) | g0) = b(x@) g) +g*
(35) g = ~—52(x(t))-g(t)+ge.v

Equ. (32) after having inserted equ. (34) and (35), and equ. (33) after
hving inserted equ. (26), (29), equ. (22), (23), and equ. (34) and (35) form
a two dimensional non linéar system of difference equations with the

variables x () and g().

2.3. The natural solution as a fixed point

It is easily checked that the conditions for the natural solution define
a fixed point of the specified dynamic system.

(36) n@) =r¢) =g°
(37) L) =gt =g
(38) , x (@) = xn
(39) P,¢) = PN,

¢ This condition is satisfied, if the net output in each sector is at least sufficient to cover
the own labor costs.
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2.4. The stability properties of the fixed point

2.4.1. Linearization

In order to analyze the stability properties of this fixed point solution
we linearize the system by forming the Jacobian matrix at the fixed point.
For the elements of the first line we insert equ. (34) and (35) into equ.
(32), form explicitly the respective derivatives and use the natural position
for simplification. We ultimately get

Ox (¢)
o) (-1,

ox (¢) __51(‘)‘}'&2(-)
dg (¢t — 1)lm_ 14 g¢

For the elements of the second line of the Jacobian matrix the derivatives

* X1

(41)

of
(42) g@)=a-flr, (P lx(t—1),g(t —1)),P0c(z~ 1),g(t = 1))),
7, (P (x(t—1),g(t = 1)),P,(x(t — 1),g(z - 1))))

are to be determinated and evaluated at the fixed point. The first one can
be split into the following product:

agg) _ _of) _
(43) (-1, " amxt-1

af@) [ar(t) P, () o (t) 0P, ()
“ {arl() [61’ ) Ox(t— 1)+ dP, (t) Ix (¢ — 1)] "
L@ [ﬁrz £, _ P  9n@) _dP,(1) ”
dr, () 1OP (¢) dx(t—1) P, (t) dx(t—1)

For the sign of this derivative we recall equ. (14), (27), (28), (29) and
(30). Forming the derivatives of P;(¢) explicitly, it further can be shown

that

aP, (¢)

(44) FATEI UIW:
{“11"212‘(1+g6)“lz'[1‘“d11°(1+ge)]}“(PN1)2<O
¢l -xn+ LJ?

P, ()
(45) PSS =
L —ay U+ g+, ay - (L+ g9 - (PN,)?
B (1—¢) [ -xn+ L]

>0
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Therefore
agt) af )

(46) dx (t — l)lmnﬂ.'ﬁx(t—— 1)<O'
The last partial derivative can be split in the following product
x@) _ o) _
47 agt—1),. ‘ dg(¢—1)

of@t) [dn (@) OP@) |, on(t) P,
“'{arl(t '[apl(f) dG—1) P, ) 5g(t~—1)]+

)
af(t).[ or,(¢) P, () + ar,(t) P, () H
)

Or,(t) LAP,(t) dg(t—1) " oP,() et — 1)

with

(48) o, (¢) _ —(—au-bl-xn—kau-bz)-(PNJZ
dg(t—1) c-(l,-xn+1)

(49) P, (8) _ —(—ay-by-xn+ay,-b)- (PN,)?
dg(t—1) (I=c)- (- xn+1)

No estimation of the sign is possible, because the sign of the derivatives
of the prices remains ambiguous.

Equ. (40), (41), (43) and (47) give the expressions for the elements of
the Jacobian matrix (evaluated at the fixed point). Its trace and its
determinant can be written as follows:

(50) . 9@
. trace (J)=1+a B 1)

_ o) bi+b, ()

(51) det(]) =a PPy X e a FoPE—

2.4.2. Some properties in detail

2.4.2.1. Overview

We use the graphical representation in the determinant/trace space in
order to analyze the stability properties of the fixed point (cf. e.g. Sargent,
1987). The coefficient of adaptation is the parameter, which defines a family
of equation systems (with an equal fixed point).

1. If the coefficient of adaptation equals zero, the determinant of the
Jacobian matrix is zero as well and its trace equals 1. Regardless of all other
parameters (such as technology, structure of final demand, and the reaction
function) the determinant/trace combination appertaining to every possible
family of equation systems will be found at point T (cf. fig. 1).
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trace C A
B
T
det
A
C B
Figure 1

2. If the coefficient of adaptation increases, the determinant/trace
position leaves this point following a straight line. The direction of this
movement generally depends on the numeric specification of the other
parameters. Nevertheless, some cases may be excluded.

3. The determinant/trace position moves for all possible specifications
of the equation system to the right hand side (i.e. 8det(J)/0a is always
positive), and never to the left hand side.

4. For (economically meaningful) positive values of the coefficient of
adaptation, it never enters the unstable region above line AA. Therefore,
no fold bifurcation is to be expected to occur for positive values of the
coefficient of adaptation (cf. Whitley, 1983).

5. Therefore, only two possibilities remain:

The determinant/trace position may eventually cross the line CC and
a Hopf bifurcation occurs. We subsequently denote the appertaining limiting
value for the coefficient of adaptation with «1.

The determinant/trace position may also cross the line BB, where a flip
bifurcation is to be expected to occur (cf. Whitley, 1983). 22 indicates the
respective limiting value for the coefficient of adaptation.

6. Which of the two cases occurs, depends on the numerical specification
of the other parameters of the equation system.?

Now we turn to the derivations in detail.

7 For a simplified specification conditions for the occurrence of the two cases can explicitly
be derived (cf. KuBiN, 1991).
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2.4.2.2. Property 1

The first property that the path of the determinant/trace combination
starts at the point T(0/1) follows directly from inserting @ = 0 into equ.
(s0) and equ. (51).

2.4.2.3. Property 2

The second property, that the determinant/trace path is a straight line
is implied by

d (trace (])) af (¢)

(52) y = -1 = const.
Idet () _ 3f®)  bi+b, ()
(53) da -1 144 -1

both expressions being constant (i.e. not dependent on the coefficient of
adaptation) for a given system of equations.

2.4.2.4. Property 3

The third property states that
d(det (])) >0

(54) T a
) btb, 30
53) -1 " lvg w1

or inserting from equ. (47) ‘and (43)
af) ([on@) P ()  dn@) P 7
(56) or, (¢) 'Hapl ) dg(t—1) * dP,(t) dg(t— 1)}
o bitb, [9n() OP) | n(e) 9P,()
T L?Pl(t) -1 3P, 6x(t——1)H>

O ([0 B d0 )]
o) LLaP. (&) 3e—1)  aP,() dgt— 1)

_ n%ﬁ@,{arz(ty () | ) P H
14g° [P, () dx(e—1) P, () dx(t—1)

Paying regard to equ. (14) this propery holds because the expression
in { } brackets on the left hand side of equ. (56) can be shown to be positive,
and the one on the right hand side to be negative. _

In order to show the left hand side to be positive, we insert from equ.
(27), (48), (28), (49), (44), (45), and collect the terms with &, and 5,
respectively, on opposite sides of the inequality sign (for details cf. Kubin,

1991).
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In order to show the right hand side to be negative, we insert from
equ. (30), (48), (31), (49), (44), (45) and collect again the terms with 5,
and b,, respectively, on opposite sides of the inequality sign (for details
cf. Kubin, 1991).

2.4.2.5. Property 4

The fourth property states that the determinant/trace path of the system
never enters the unstable region above line AA. To show this property it
has to be checked whether the slope of the path is smaller than 1 (. e. the
slope of line AA).

d (trace (]))

oa
(57) 3dec )

da

The denominator is positive (cf. property 3). We insert from equ. (52)
and (53) and ultimately get

bt b, )
14+g° ox@—1)

which holds because of equ. (46).

(58) 0< —xn

2.4.2.6. Property 5

The fifth propetty states that the determinant/trace path may eventually
cross either (property 5a) the line CC with a Hopf bifurcation occurring
(at some limiting value al of the coefficient of adaptation) or (property
5b) the line BB with a flip bifurcation occurring (at some limiting value

a,).
The determinant/trace path crosses the line CC as long as
d (trace (]))
Oa
(59) [>—e> =3
’ 3(det (])
da

The left hand inequality has already been shown (cf. property 4).
Recalling that the denominator is positive (cf. property 3) and inserting
from equ. (52) and (53), the right one ultimately reads
____af_(f.)._ﬂ>_3_.xﬂ.bl+b2. af(t)
dg(t—1) 4 1+g° ax(—1)

If the determinant/trace path crosses the line CC, both eigenvalues of
the Jacobian matrix are complex conjugates and their modulus (i.e. the

(60)
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determinant of the Jacobian matrix) equals 1. This condition makes it
possible to fix the following limiting value 41 for the coefficient of adaptation
(rendering the determinant equal to unity, cf. equ. (51)):

_ 1
¢ T N0
dg(t— 1) 1+g¢ dx(t—1)

That this limiting value is economically meaningful, 7.e. positive, is
implied by equ. (60) (recalling equ. (46)).

It can further be shown that at 41 a Hopf bifurcation occurs. The
following conditions should hold:
1. The eigenvalues of the Jacobian matrix valued at the fixed point [,
should be complex conjugates.

This property is one of the conditions for deriving 1.

2. Their absolute value should equal 1.
This property, too, is a condition for deriving the limiting value.

3. ['a) # 1 fori=1,...,4
This property would be cumbersome to show and is, thus, assumed to

“hold. /
J _9
4. Eg(ll(d)')Fﬂ_a (det(])) >0

a

which holds for every specification of the system (as shown above, cf.

property 3). ,
Property 556 states that the determinant/trace path eventually crosses

the line BB with a flip bifurcation occurring (at some limiting value 42).

The determinant/trace path crosses the line BB as long as

d (trace (]))
~ a 3 (det (])
(62) m_m_é‘(det(])) < ~3 and Y >0
da

While the right inequality always holds, the left one reads (after having
inserted accordingly, cf. above equ. (59) — (60))
i) 3. .. bitb @)
(63) -1 4" T - 1)

If the determinant/trace path crosses the line BB the eigenvalues of the
Jacobian matrix (eveluated at the fixed point) are real numbers and one
equals — 1. The following condition allows one to derive a second limiting
value 42 for the coefficient of adaptation (cf. Goldberg, 1958):
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(64) 1+ trace (J) + det (J) =0
Inserting from equ. (50) and (51) leads to
-2
6 =
(03) T R 10
dg(r—1) 1+g¢ ox(t—1)
That this equation determines an economically meaningful, 7. e. positive

limiting value a2 for the coefficient of adaptation, is again implied by equ.
(63) and (46).

3. SUMMARY

The central concern of the present paper is the relation between market
prices and natural prices in the classical approach to economic theory. The
natural position is often conceptualized as being independent® of the
particular, unsystematic market processes. According to this view (cf. e. g
Garegnani, 1976, Milgate, 1982) the analysis of market prices is of secondary
importance in comparison to the analysis of the natural position. The motion
of market prices is held to be regulated by the natural position. Market
prices gravitate to or around the natural position. The specific form of this
dynamics may be rather unsystematic; however, it is of subordinate interest
because it is judged as not feeding back to the natural position.

The formal analysis of the model showed the following results. First,
the natural solution is a fixed point of the specified market dynamics.
Second, a range for the coefficient of adaptation exists which renders this
fixed point locally asymptotically stable. It is crucial that this property does
not depend on the technology matrix (in contrast to Nikaido’s results, 1983,
1985; cf. for a discussion, Kubin, 1989). Third, at some limiting value of
this coefficient of adaptation the time path of the system undergoes a (Hopf
ot flip) bifurcation, where a motion of the system without predetermined
petiod is to be expected. For a somewhat simplified model further results
could be derived (cf. Kubin, 1991): Simple conditions could be specified
for separating the two bifurcation types. Computer simulations revealed
different unsystematic (yet bounded) dynamic patterns which can occur
for adaptation coefficients greater than the limiting value. Adding a lagged
term to the reaction function increases the stable range for the coefficient
of adaptation. All these results support the gravitation hypothesis.

In order to conclude, I would like to point out that the unsystematic

8 This does not amount to considering the natural position as constant or invariable; it only
maintains that the laws governing the natural position differ from those controlling the
(unsystematic) market processes (cf. DELEPLACE, 1984).
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(yet bounded) motion of the system in a neighborhood of the fixed point
solution is not only a curious or, at best, an aesthetically appealing feature
of the suggested model (cf. Farmer/Kubin, 1990). First, to begin with the
most obvious aspect, this type of motion enlarges the range of the coefficient
of adaptation for which the hypothesis of gravitation is not violated. For
the gravitation idea it is not necessary that the time path converges to the
natural solution; it suffices if the time path remains close to the natural
position. Second, it is exactly this type of motion which is highly compatible
with the underlying idea that the natural position and its determinants are
independent of the market processes. This concept appears only to be
intuitively reasonable if the market processes are unsystematic. Any system
in their motion could eventually be learned by economic agents. Their
reactions, in turn, would modify the determinants of the natural position
(as there are technology, effectual demand and income distribution). An
unsystematic motion of the market variables inhibits these reactions. Third,
the (positive) information which an unsystematic type of motion can convey
is that the system is in a critical phase. Economic agents lose confidence
in their decision basis and it could be supposed that they react more
cautiously. An unsystematic type of motion, therefore, allows the economic
agents to modify their behavior. This is not the case for a strictly diverging
motion. In a broader context where also the functional relationships are
allowed to vary, an unsystematic (but still bounded) type of motion can
be considered as increasing the overall stability of the system (cf. Day, 1981,
Vercelli, 1982).

Institut fiir Volkswirtschaftslebre -
und Volkswirtschaftspolitik, Universitit Graz.
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