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On Composite Market Dynamics: Symultaneous
Microeconomic Price and Quantity Adjustments

Willi Semmler

I. iNTRODUCTION!

In modern neoclassical theory since Hicks (1939) and Samuelson (1947),
microdynamic adjustment processes have, in general, been stylized through
price adjustments. The ‘law of excess demand’ determines the law of motion
of prices. This price dynamics has been demonstrated to be asymptotically
stable under the assumption of gross substitutes or the weak axiom of
revealed preference.? Usually, the study of this dynamics is conducted by
means of the celebrated price-tdtonnement. In this proposed mechanism,
quantities (7. e. supply and demand), in contrast to prices, are assumed to
adjust infinitely fast to every new price vector. In particular, there is no
dynamics formulated for the adjustment of supply.

Though the above price adjustment process was originally interpreted
as Walras’ contribution to economic dynamics (Yaffe 1967), recently it has
been recognized that Walras had also put forward a more classical oriented
“disequilibrium production model” (Walker 1987), where market dynamics
is based on two laws: the ‘law of excess demand’ and the ‘law of excess
returns’.? This two-fold adjustment process has been called “cross-dual”
dynamics by Morishima (1976, 1977), ot cross-field dynamics by Goodwin

1 This paper draws on joint work with PeTer FLAscHEL, whom I want to thank for helpful
discussions. A related version of the paper was presented jointly with PETER FLASCHEL at an
Econometrics Society session at the ASSA meeting in Atlanta, December 1989. Comments by
Ricuarp GoopwiN and MicHio MorisHIMA are gratefully acknowledged. This version of the
paper was prepared while I enjoyed the hospitalisty of the Economics Department at Stanford
University. I want to thank DoN HARrRris for stimulating discussions and for helping to arrange
the visit to STANFORD. I also want to thank participants of the conference for helpful discussions
and RauL ZameraNo for assistance in the computer study.

2 Cf. ArRrow and HUurwicz (1958). For a summary cf. HAHN (1982). Recently, due to the
work of Sonnenschein (1972) it has been recognized that the ‘law of excess demand’ proves
to be unstable for a very general class of excess demand functions (cf. also the subsequent work
by Saart and SiMoN (1978) and JorDAN (1983), which is based on those results).

3 Extensive verbal formulations of this two-fold dynamics can be found in many classical
writers in economics, for example A. SMITH (1976, ch. 7), D. Ricarpo (1951, ch. 4), K. MARX
(1967, ch. 10), L. WALRAS (1977, chs. 12 and 18) and A. MARSHALL (1947, chs. 3 and 5).

193



(1970). Accordingly, the dynamics of market systems can be formulated
as follows: (i) the output of a commodity is expanded or reduced (through
entry or exit of firms) whenever the excess of price over cost* is positive
or negative (‘law of excess returns’); and, (ii) the price of a commodity is
raised or lowered whenever there is an excess demand or supply on the
market (‘law of excess demand’). Since this type of dynamic process is,
by and large, built on the classical tradition in economics, we will call it
classical cross-dual dynamics.

Mathematical formulations of such dynamics have been provided from
the perspective of Walrasian general equilibrium theory in Beckmann and
Ryder (1969) and Mas-Collel (1974, 1986), who discuss the stability of the
two components of the above dynamics. Different variations of more
classical versions of the above dynamics can be found, for example, in
Goodwin (1953, 1970, 1988), Goodwin and Punzo (1986), Morishima
(1960, 1976, 1977), Duménil and Lévy (19872, 1987b), Franke (1987),
and Flaschel and Semmler (1986, 1987).

Such formulations of short-run dynamic adjustments are considered
unsatisfactory from recent macroeconomic perspectives, particularly in the
Keynesian tradition. In Keynesian economics another dynamic process has
been favored. This type of process has been called “dual dynamics” by
Morishima (1976, 1977). The dynamic process can basically be stylized as
follows: (i) quantities change due to excess demand (the output reaction
of already established firms) and (i) prices change proportional to the
difference of (marked-up) costs and prices.’> It has been maintained that
these ideas can already be found in Keynes.$

The quantity adjustment brocess has become an essential element in
non-Walrasian models on quantity rationing and disequilibrium analysis.
The price adjustment has been elaborated by many Keynesian (or New
Keynesian) theories such as the early theory of entry-deterring pricing, as
well as new theories of price adjustment based on the imperfect
competition/imperfect information framework. For the most part, some
kind of mark-up pricing is involved to provide a justification for the above

4 Cost can also include normal profit or the opportunity cost of capital. In some models
it is interpreted as average cost (Goodwin 1953), in others as marginal cost (cf. BECKMANN and
RYDER, 1969; Mas-CoLLEL, 1986).

> Economies with such properties have been called fixprice” economies by (Hicks ( 1965:
82). In the fixprice system, imbalances of supply and demand cause quantities to change and
prices respond to the discrepancy between the marked-up costs and current prices (cf. Hicks,
1965:82; KALDOR, 1985; TOBIN, 1983).

¢ Though there is considerable doubt whether the above dual dynamics can be found in
Keynes’ ‘General Theory’, the ‘Keynesian Revolution’ is usually associated with it as already
Hicks (1965:77) mentions. Leijonhuvud (1968:24) goes a step further than Hicks and suggests
that the ‘General Theory’ represents a “ systematic analysis of the behavior of a system that
reacts to disturbances through ‘quantity adjustments’ rather than through price-level or wage-
rate adjustments”, ‘
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price dynamics.” It might be fair to state, however, that recent
microeconomic theories of quantity and price adjustments do in rare cases
put forward dynamic formulations of such adjustment processes.

There is though already an older Keynesian oriented tradition which
has put forward dynamic versions of the aforementioned two adjustment
processes. Early dynamic formalizations of Keynesian quantity ad]ustments
decoupled from a corresponding type of price dynamlcs were given for
Leontief-systems by Jorgenson (1960) and others in the form of the so-
called dual instability theorem which assumes full utilization of capacity
and a perfect foresight path of prices.?

Proper mathematical reformulations of such a dual dynamics of the
Keynesian type can be found in the work of Morishima (1976, 1977),
Goodwin (1970, 1988), Aoki (1977), and Fukuda (1975) (cf. also Mas-Collel,
1986, for a slightly different version). Here, for the most part, the .
assumptions of full utilization of capacity and perfect foresight are dropped
when a stability analysis of the dynamics is provided.

Given the above two traditions in quantity and price dynamics, the
classical cross-dual and the Keynesian dual fashion, a natural way to
overcome deficiencies of each and to enrich our view on market adjustment
processes is to integrate the two types of quantity-price adjustments into
one unifying approach. Empirically it seems to be appropriate to maintain
that the two types of adjustment processes are operating simultaneously,
with the possibility, however, of different adjustment speeds.? Our paper
therefore suggests a composite dynamics of price-quantity adjustments
integrating the cross-dual and the dual dynamics in one dynamic system,
and studies the dynamic properties of the aggregate system.

In section II a composite market dynamics will be sketched that both
adds realism to our study on market' dynamics and can be justified on the
basis of some microeconomic considerations. Composite or aggregated
microeconomic adjustment processes have originally been introduced by
Flaschel and Semmler (r989a, 1989b). There, however, the stability
properties of composite market dynamics were studied without obtaining
general results. It was shown there that traditional methods of stability
analysis can demonstrate stability for the behavior of such composite
dynamic systems only under very restrictive assumption concerning the

7 The more recent theories in particular attempt to explam the sluggishness in price
adjustments compared to faster output adjustments when quantity imbalances prevail in markets.
These theories are mostly based on the 1mperfect competition/imperfect information framework
(cf. HaLL, 1986; ROTEMBERG and SALONER, 1986; STIGLITZ, 1984; and GREENWALD and STIGLITZ,
1989) For a recent literature survey on wage and price r1g1d1t1es cf. Gorbon (1990).

8 Starting with this eatly contribution, dynamic models with saddle-point instability became
dominant in the perfect foresxght ‘rational expectations’ theory.

® In this context one can cite he work of, for example, GOrRDON (1983) and TaYLOR (1980,
1986), who show that both price and quantity ad ustmetns are empirically occurring simultaneously,
though, as GORDON (1990) demonstrates, there are diversities across industries, time and countries.
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reaction coefficients. New methods need to be explored to study the stability
of composite systems. In section III, such a stability method in the tradition
of Liapunov’s direct approach, first explored in Flaschel and Semmler (1988),
will be employed for studying the dynamics of composite systems. This
method works with vector Liapunov functions and shows how conclusions
may be drawn with respect to the aggregate or composite system. In section
IV then, computer studies explore some further conjectures and suggest
(in combination with the experience from many eigenvalue computations)
that stability regions with regard to adjustment speeds may be much larger
than we are able to prove analytically. On the other hand, a large class
of counterexamples to stability are demonstrated to exist by employing
eigenvalue studies for randomly generated matrices. Experiencing the
unstable cases we then propose a sensible economic mechanism which, when
introduced into the composite dynamics, will give rise to stability or bounded
fluctuations. Additionally introduced stabilizing mechanisms, represented,
for example, by derivative control terms as originally proposed in Flaschel
and Semmler (1987), will be explored. The incorporated stabilizing terms,
as will be briefly discussed, are of more general importance, for example
to stabilize unstable excess demand functions.®

II. ON COMPOSITE MARKET DYNAMICS

The two directions in formulating economic dynamics, the classical and
the Keynesian, have been introduced above. Here, briefly, before
introducing the composite market dynamics, the stability results for the
two separate systems will be sketched.

For the Keynesian!! dynamics, it has been shown in Flaschel and
Semmler (1988) that the equilibrium of the Keynesian (dual) dynamics is
unique and, for the case g, » < r*, also stable. The limit case g = r = r* can
be shown to have an eigenvalue with a zero real part (of multiplicity 1 or
2). It also can be shown that the matrices involved there are stable Metzler-
matrices and consequently also diagonalstable.?? Stability of the Keynesian
microeconomic adjustment processes is additionally shown by means of
Liapunov functions in Appendix 1.

The cost of the Keynesian approach is, however, that certain problems
are neglected the consequences of which are not thoroughly analyzed. The
Keynesian dynamics neglects: (i) inventory movements, (i) supply-

10 For a more detailed analysis of a general type of a cross-dual dynamic system with derivative
control cf. FrascHeL and SEMMLER (1987).

1 Without going into details, it is worth noting that the New Keynesian microtheory stylizes
similar adjustment processes as was above discussed for the Keynesian version.

12 Cf. FrascHEL and SEMMLER (19892, 1989b). For definitions of Metzler and diagonal
stable matrices, see Kemp and Kivura (1978:134££).
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constraints, (iii) effect of activity levels on employment, money wages and
consumption, (iv) the effect of differentials in rates of return (actual rates
measured against some normal rates of return), and (v) the effect of
imbalances in demand and supply on prices. Qutput and price dynamics,

(in the Keynesian system, are two separate types of dynamics (as already
implicit in the earlier dual instability theorem of Jorgenson, 1960). On the
other hand, in the classical dynamics the properties (iv)-(v) are made essential
ingredients for market adjustment processes.

For the cross-dual system the (unique) equilibrium is the same as the
one for the dual-dynamics, however, the stability properties are more
difficult to study. To the best of our knowledge no general results are
obtained. As shown in Flaschel and Semmler (1989b), for the limit case,
g=r=r% a Liapunov function can be utilized which will help to prove
stability of the classical dynamics. One will, however, not obtain asymptotic
stability with g = r = #*. Moreover, an additional stabilizing term of a more
classical nature can be proposed for classical dynamics — response of firms
to the time rate of change of profit deviations from the norm — which
will give rise to asymptotic stability of the cross-dual dynamics (cf. Flaschel
and Semmler, 1987, 1989a).

Though in the cross-dual system price and quantity dynamics are
formulated through interdependent subsystems, criticism might be raised
from the aforementioned empirical perspective. There is indeed strong
empirical evidence that price rigidities (due to adjustment cost or uncertainty
connected to price changes) will predominantly give rise to output adjustment
— rather than price adjustments — when imbalances of markets prevail
and price adjustments may be dominantly occurring only through a mark-
up pricing procedure.!> Those types of market adjustments, stylized in the
Keynesian dual dynamics, are missing in the classical dynamics, and
modifications of it seem to be required.

Thus, a formulation of a composite price-quantity dynamics appear to
be advisable that incorporates simultaneously both types of adjustment
processes. The adjustments may, however, operate with different speeds.

Integrating the dual and the cross-dual adjustment processes into one
composite or aggregate system gives the following more complete type of
dynamics

x=d,C@x—d,C(r)'p’" +q, : (1)
p’ =d, C@x+d,,C)'p’" +q, (2)

Here d.;, dy,, d,;, and d,, are diagonal matrices with positive diagonals,
representing adjustment speeds. C(n)’ =((1+AA 1", Cl@ =((1+9
A — I) are nxn matrices with A the usual intermediate input matrix, r the

3 Cf. the aforementioned literature on price adjustment, for example KALDOR (1985), HALL
(1986, 1988), and GREENWALD and StIGLITZ (1989).
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rate of return on capital, g the rate of growth, ¢, =d,,c — d,w, g, =d,, ¢
+ dzzw(dlz, d,, of the same type as d,;, d,,) ¢ a (column) vector of final
consumption goods, and w a vector of wage payments per unit of output;
The vectors x, p (corresponding to ¢, w) as usual stand for activity levels
and prices, respectively, and %, p denote their time derivatives. The limit
case arises when g =r=r* If we assume that ¢ =0, w >0 than 0 <rg
< R* —1=r* derived from the scalar 1/R* =1, (A) = 4,.(A") =1/
(1 + r*) which is the maximum eigenvalue of the matrices A and A’
(assumed to be indecomposable for simplicity).

A microeconomic interpretation of the above composite dynamics can
be given as follows. Concerning the output reaction, formalized in (1), it
is hypothesized that firms do not respond solely to imbalances of demand
and supply when revising their production (and investment) decisions but
that output in also scaled up (or down) according to whether the actual
rates of return are above (or below) the norm or target rate r. Compared
with the (Keynesian) quantity reaction to quantity imbalances the additional
(classical) quantity reaction due to profitability differences may, however,
be considered a slow dynamics — mainly initiated through entry and exit
of firms. We might thus assume that d,, < d,;.

On the other hand, concerning price dynamics, in our view it also adds
realism to a-model of market dynamics if one assumes a two-fold process.
Accordingly, in our dynamics (2) we posit that firms when they set prices
follow two decision-making criteria: first, prices are provisinally set on the
basis of a mark-up (or target rate of return) calculation and secondly, they
are further revised, through an error correcting process, in proportion to
the imbalance of demand and supply in the various markets. Price studies
for large firms appear to support such a price dynamics (cf. Semmler, 1984,
ch. 3).

The existence and uniqueness of the equilibrium of (1), (2) is proved
in Flaschel and Semmler (1989b). For convenience, in the subsequent
sections, we want to write (1), (2) in compact notation as

[x} = [dnc @ —dye (7”),} [X] 4 [41] (3)
pl = Ldyc(g) dpe ('] Lp’ q>

The dynamic properties of (3), where the different subsystems now
interact, are to be studied. Note that (for g,» < r*) the Keynesian dual
dynamics, sketched in the diagonal of the above matrix, is asymptotically
stable and the classical cross-dual dynamics, portrayed in the off-diagonal
terms of the above matrix,'* is marginally stable. One might therefore

conjecture that the stability of system (3) above is easy to demonstrate.
Yet stability of the simple case, with a constant coefficients’ (square) matrix

14 For a more general model of classical type with explicit stability analysis, cf. FLAsCHEL
and SEMMLER (1987).
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as referred to above and constants g and 7, is not obvious. In addition,
a modified case will arise when, as will be shown subsequently, the rate
of return r and the growth rate g is endogenized by using their average
rates in each period in the dynamics (3).

IIT. STABILITY ANALYSIS OF THE COMPOSITE MARKET DyNAMICS

Several methods have been explored in Flaschel and Semmler (19894,
1989b) to study the dynamics of system (3). All methods (diagonal
dominance, quasi negative definiteness and Liapunov functions) revealed
that the stability of the composite system is crucially dependent on the
constellations of the reaction coefficients in the dual and cross-dual
dynamics. With the method of diagonal dominance and negative definiteness
of matricess only simple cases of stability could be demonstrated. The
remainder of the paper, by employing vector differential inequalities and
vector Liapunov functions as put forward in Siljak (1978)* and as already
discussed in Flaschel and Semmler (1988, 1989b), will show that a composite
system such as (3) will be stable if the subsystem represented by the cross-
dual dynamics interacts only weakly with the subsystem portraying the dual
dynamics. Subsequently, some extensions wil be explored.

The type of stability analysis which is involved here is termed connective
stability. Interesting methods for studying connective stability for composed
systems by a decomposition-aggregation procedure are provided by the
concepts of vector differential inequalities and vector Liapunov functions
as elaborated in Siljak (1978, ch.2) and summarized in Appendix I.

II1.1. Stability with Weakly Connected Subsystems

From our above stability discussion of the separate subsystems it is clear
that the problem we are facing concerning the stability of system (3) is
less severe than, for example, that appearing in other cases (cf. remark 1
and 2 in Appendix I). Our composite system (3) is of the form (A1) of
Appendix I with two stable decoupled subsystems A,, =d,,Clg), 4,, =
d,,C(r)’ for which the two Liapunov functions as needed for the proof
(cf. Appendix I) exist.

In order to investigate the asymptotic stability of the totally
interconnected system and the interconnections allowed here we need to
consider, according to the theorem in Appendix I, the following matrix:

15 Further references on this topic are BErussoU and TrrL1 (1982), MEDIO (1987), MICHEL
and MILLER (1977), and SingH and TrTL1 (1979).
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_ 12 -1 1 12 ”1-———-————-—QM(H1)
(@) DR g my e ) g
wz',i =
: 1/2 -1 'QM (HZ) — 1/2 -1 _._._—1...___
€, (2, (H) —-~————Qm R () Qu'? (Hy) ' 1/2 Q. (H)_|
—_ 1/2 (QM (Hl)) -1 € QM (Hl)

Q, 1/2 (H) Q, 12 (Hz)
(4)

il

€ 'QM (Hz)
21 Qm 12 (H1) Qmuz (Hz)

with e, = = Qy"»(C(Nd,*C’ (r)) and €, = Q,2(C ()’ d,,2C(g)) > 0.
Sufficient for the stability of our composite system is that the Metzlerian

mattix (4) is Hicksian, cf. Kemp and Kimura (1978:141ff.). Since ,,, i,

are negative, we therefore have to explore only whether Det(W) is positive.

We have
Pet W) =14 o iy o)~ 2 < 0, () 0. (1)

1 [1 _ 20y (H) 9y (H,)* ]
Qy (H) Oy (H) Q,H)Q,H) *™

In order to explore situations where Det (W) > 0 holds true we consider
the following scalars in front of the reaction coefficients d,;, d,,, dy,, d,y:

0‘11d11> 0y, éfxudlz: aydy  with a; > 0.

In this case H,, H, are to be substituted by H,/a,,, H,/a,, as can be seen
immediately from the following explication (cf. Appendix I)

Cl@'d,H, + H,d,,C( = - I, CWd,H,+ H,d,,C(r)) = ~ L

The elements of matrix W are thus determined in nearly the same way
as before — with the provision that scalars o; appear as multipliers at the
appropriate places. It remains to be shown, therefore, that the expression
in square brackets [+] in the determinant (5) becomes positive for
appropriate variations of adjustment speeds. We can have

oy TP ay, T 20y (H) Oy (H,)?
o "t ey, ! Q, (H) Q,(H,)

for a suitably chosen range of a;.

Now it is obvious from (6) that for given a,,, @, for example,
choosing sufficiently large scalars o, @, will render the system
asymptotically stable (or for given a;;, a,, there exist always sufficiently
small «,,, «, which will generate connective stability, as defined in
Appendix I, for system (3)). This shows that the composite system will

— 1/2 (2 (H,)) !

= 1/4 (5)

1- %, %y (€, 621) >0 (6)
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be asymptotically stable if the classical dynamics is made sufficiently weak
or long-run in nature.¢ Furthermore, the expression (6) can be equivalently
rewritten as follows

(Q,,(H) Q,,(H,)] 22y (F,) Qy (L)) >
(612 X261 0‘21)/(“110‘22) (7)

In this form it shows how the stability characteristics of the Keynesian
subsystem (as they are expressed by the two Liapunov matrices H,, H,)
must dominate the off-diagonal interaction coefficients to obtain overall
stability: The larger the interaction parameters e, are, the smaller the
we have to choose to make the approach of Appendix I applicable (the «;
can be set equal to one without loss of generality).

However, the above calculations also show that estimates for Q,,(H)),
2y (H,, ¢; have to be developed first to obtain more than the above very
general statements.!” A problem with this approach is, however, that it
1s insensitive to the typical sign structure of our cross-dual interconnection.
The advantage of this method over one-shot approaches is noticeable but,
in the present case, still somewhat limited. It may be advisable in subsequent
research to use more specific features in the interconnective (or classical)
part of the composite dynamics so that its influence on the stability of the
system becomes more apparent. ' :

I1.2. Additional Stability with Derivative Control

The remarks 1 and 2 in Appendix I indicate that one should make more
use of extensions of our composite dynamics to obtain overall stability.
In this regard derivative control may be.a helpful device. We will indicate
here briefly how these extensions can be pursued. From remark 2 in
Appendix I one can derive, for our composite dynamics (3), a refined
adjustment such as

%= —d,[CH) p" +yC()'p']

instead of only ¥ = —d,,C(’'p’. The new term — yd,,C(r)’p expresses
the fact that the time rate of change of profit-rate differentials is also
considered by firms when scaling up (or down) production as formulated
in (2). Extending the dynamics (2), for example for g = r = r*, by including
the above term gives

i=d, C@x—duCO ' p' — vdy,CH’ [dy Cl@)x + dpy CH) ' p'
p=d,Cl@)x +d,CH"p’

16 The slow adjustment speed for the cross-dual dynamics seem to be confirmed by the large
body of empirical literature on price rigidities and quantity adjustments as cited above.

17 Cf. Siyak (1978:110-111) for a simple numerical example in this regard. For solving the
above problem Kronecker products and their application to matrix equations of type (A2) in
Appendix I can be used, cf. LANCASTER and TisMENETSKY (1985, ch. 12) for details. Yet, an
investigation of the numerics of the above approach is beyond the scope of the present paper.
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With regard to such an extension we get for the composite system in terms
of equation (A1):

Z = 41121 +een AL Anz + e Apz, + erAL AR,

2= Anz, + ey 452, (8)

For g=r* we have for A,,A, the expression —d,C’d, C with this
matrix being symmetric and negative definite. With ¢’ ,=¢,, =1 we
therefore get with e’,e,, YA,,A,, an extra stabilizing term in the diagonal
of (8). This new stabilizing term has to be contrasted, in its influence on
the composite dynamics, with the new off-diagonal term A,A,, = — d,,
C'd,,C’ and its dynamic effect on the cross-dual interaction (c.f. sect.
IV.2. below).

Note that the excess demand functions (as they appear since Hicks in
neoclassical titonnement analysis) are here represented through the terms
Ay, A, More general excess demand functions which are known to
create problems for the one-sided conventional tdtonnement process are
thereby made less dominant in (8) than in (3). Their influence on price
dynamics (given by e,,A,,z,) is now off-diagonal. It is, according to our
considerations in (6) and (7), only to be propetly limited (but it no longer
needs to be stable itself). Their possibly destabilizing influence on the
quantity dynamics is now partly compensated for through the new stabilizing
term in the first part of (8). |

In sum, it has been shown that by employing vector Liapunov functions
sufficient restrictions on the adjustment speed of the cross-dual dynamics
will always render the composite system stable. This method, as those
discussed in Flaschel and Semmler (1989a, 1989b), cannot demonstrate
stability independently of the adjustment coefficients d;. On the other
hand, our composite system (3) has a more specific structure than assumed
in the proof of stability in sect. IIl.x. Stability of the composite system,
therefore, may prevail even with stronger reaction coefficients in the cross-
dual part. We also might want to explore the stability propetties for basically
unstable systems when additional terms, representing derivative control,
are operative. These problems cannot be discussed analytically in the context
of Siljak’s approach. Further computer studies are needed.

IV. COMPOSITE DYNAMICS AND DERIVATIVE CONTROL: COMPUTER STUDIES

In what follows we discuss theree types of extensions. First, simulaton
studies will be discussed that show that stability of our composite dynamics
prevails even if the off-diagonal reaction coefficients are increased and even
if nonlinearities are introduced. The nonlinearities are represented by
endogenized profit and growth rates. Second, we display simulations for
a case when there are strong off-diagonal reaction coefficients in system

202



(3) rendering the system unstable. A larger class of unstable matrices will
then be presented which were detected by employing eigenvalue studies
for matrices generated by a random number generator. Third, we want to
demonstrate how trajectories of the dynamics of even unstable systems
(either stemming from the unstable matrices or from the off-diagonal
reaction coefficients) can be stabilized by a sensible economic mechanism
which gives rise to stable or bounded fluctuations.

IV.1. Composite Dynamics: Stability Regions

In the first type of extension we are considering a basically stable system,
which remains stable for a large range of reaction coefficients, and we drop
the assumption on constant growth and profit rates g<r=<r*. We will,
however, restrict our attention to the limit case where g, = r, fluctuates
around the rate r*.

For simulations we used system (1), (2) in time discrete form as basic
model.

%45 =%+ hd;C@x,—d,C()'p’, + q') (1)
Prsp =0t /?(dzlc(g)xt +d, C P’ + ) 2’

with ¢' = d,¢c — dpw, ¢ = dyc + dy,w and where r and g constants or
endogenized.!8 i

To illustrate stability of a simple case, we choose a 2 dimensional system
with the following A matrix and matrices of reaction coefficients.?

.35 .55 710 710
A= [.25 .45} ’d”‘[o 2] ’d”_{o 2}.

_ 1.2 og 15 0
2t [o.z]’d” [0.4}.

‘Whereas figure 1 represents the graphs for the time path of relative
prices and relative outputs of the composite system for 1 +7=1+g=
R*=1.29 = 1/A,,,.(A), figure 2 depicts the relative price and output -
dynamics for the average and endogenously determined growth rate and
profit rate R, = p,x,/p,Ax,.

Both relative prices and relative outputs exhibit asymptotic stability
for the cases 7* as well as 7, = g,. In the latter case the differential equation
system (1), (2), or their time discrete counterparts (1°) and (2'), are nonlinear.
In the simulations for 7* = g* = constant, depicted in figure 1, the reaction
coefficients of the off-diagonal terms could be further increased without

18 There exist, of course, better numerical procedures for integrating the differential equation
system (1), (2) or their time discrete counter parts (1), (2°). Our above simple procedure with
step size h (and h = .2) is chosen because it might reflect better actual economic behavior of firms.

19 Higher dimensional examples of our composite dynamics with » and g endogenized can
be found in FrascHeL and SEMMLER (1989b).
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Relative Prices and Rate of Return
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endangering the stability properties of the system (1’) and (2’). For
. = g however, the reaction coefficients for the off-diagonal terms had
to be made 10 times smaller than the coefficients for the diagonal matrices
in order to obtain stability. The nonlinearity introduced in (17), (2”) easily
leads to instability of the composite system. .

In sum, the above (and further simulation and eigenvalue studies) support
the conjecture that for proper matrices the region of stability is, at least
in the case where 7 = g = constant, much larger than indicated in the proofs
of section III. The dynamics can also be of a more general type, including
nonlinearities in the differential equations (1) and (2), and still generate
stability. Similar results were obtained for composite systems of higher
dimensions than discussed here (cf. Flaschel and Semmler, 1989b).

Next, we want to consider a larger class of systems that give rise to
dynamic instability. Instability, as will be seen, occurs with or without the
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help of reaction coefficients.2® We again refer to a time discrete version
such as (1), (27), however, with constants g < r< r*.

First we want to present a simualation result. From the large set of
unstable matrices, generated by a random number generator as described
below, we pick a 6%6 randomly generated matrix (cf. matrix A in Appendix
II.1). The Q matrix based on A is unstable due to strong reaction coefficients
for the off-diagonal terms. We find that the system has a pair of real parts
of eigenvalues A, (A) =5.45 (cf. Appendix II.1). We expect unstable
trajectories.

- With arbitrary ¢ = .03 .03 .03 .03 .03 .03 and w = .01 .01 .01 .01 .01
.01 the system has an equilibrium at p* = .18 .17 .17 .17 .17 .15 and
x*=.18 .19 .15 .11 .15 .18.

For the equilibrium vectors x*, p* as well as for the actual p and x we
use a normalization such that ¥p,=1 and 3x,= 1, and introduce a
Euclidian norm to measure the distance from the actual to the equilibrium
vectors. This is undertaken in order to allow for a selective derivative control
in case instability arises. ,

Figure 3 depicts the unstable trajectories where the off-diagonal reaction
parameters are 1ooo times stronger than those of the diagonal terms.?

20 The question then arises how the instability can be bounded by a reasonable economic
adjustment process. This problem will be pursued further below.
21 Other unstable matrices with less extreme reaction patterns are reported below.
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In order to detect a larger class of economically realistic unstable matrices,
a computer program was written that test randomly generated matrices for
instability, We created 12 and 6 dimensional matrices by a random number
generator., All the matrices had the required properties of non-negativity
and 1 < G = < R = R* so that the matrices were productive with positive
growth and profit rates. Matrices of the following type were tested; for
simplicity it was assumed d;; equal to identity matrices and y;, 7, the
scalars for the reaction coefficients.

Q= [Tldnc © —7rd,C (7),] (0)
Tzd:nC (g) 7’1d22C ()’
G<R=R*
dim v, y, R*, R G  NMT NMR?*,_ real part ratio
12 1 1000 1.5 1.5 .68R*, 500 260 170 170/260
12 1 100 1.5 1.5 .68R*, 500 268 52 52/268
12 1 50 1.5 1.5 .68R*, 500 262 1 1/262
12 1 1 1.5 1.5 .68R*_ 1500 790 0 0/790
Table 1
G =R <R* .
dim vy, y, R*, R G - NMT NMR*, real part ratio
12 1 1000 1.55 .7R* .7R* 500 250 .0 0/250
6 1 1000 1.25 .85R*_ .85R*_ 500 390 0 0/390
~ Table 2
G <R <R*
dimy 7y, R*, R G  NMT NMR*, real part ratio
12 1 1000 1.5 .9R*, .7R*, 500 365 87 87/375
6 1 1000 1.35 .9R*_ .75R*_ 500 340 13 13/340
Table 3

In the above tables dim, R*,, NMT, NMR*,, real part, ratio denote
the dimension of the matrices, the minimum R * allowed for in the random
matrices, the number of matrices being tested for their set of eigenvalues,
the number of matrices found with 1/4,,,. greater than R*,,, the number
of eigenvalues with real parts greater than zero found among the matrices
tested (possibly more than one pair for one matrices), and the ratio of real
parts of eigenvalues greater than zero to the number of significant matrices.
Moreover, as before we have R=1+rand G=1+g.

As can be observed in table 1, with y, decreasing the number of
unstable matrices declines sharply, and if y, becomes equal to 7,, there is
no unstable matrix any more, even if the number of matrices tested has
increased to 1500. Also, for the case G = R < R*, table 2, unstable matrices
are not easily found. There are, however, unstable matrices for G <R <R*~
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(cf. table 3). For the case G = R < R* there exist unstable matrices, but
of a different type. Unstable matrices of that type (which are matrices with
hypercycles) are pesented in Flaschel and Semmler (1989b).22

IV.2. The Composite Dynamics with Derivative Control

The above unstable cases motivate further explanation of stabilizing
mechanisms. We will introduce in our dynamics (3) a derivative control
as proposed in Kose (1956), Flaschel and Semmler (1987), and as briefly
discussed above, and study the resulting stability properties therefrom.?
The derivative control can operate partially or totally. Moreover, it can
be employed everywhere (globally) or in certain regions of the vector field
only (selectively). We explore all variants.

Case 1: Derivative Control for the Rate of Return

Introducing a partial derivative control for the differentials in rates of
return as suggested in Flaschel and Semmler (1987), we can write subsystem
(27) as?*

Xppp = %+ by C@x, — d, €)'’ + g — vd ,C( D) (17)
where the additional term is approximated by a time discrete version?
1d, CO) 0y — )b = vd, C()'(d, Clg)x, + d,C(n'p’, +q,) (10)

The additional term (10), as alteady discussed in sect. IV.2, represents
firms’ reaction to the rate of change of profit flows so that firms, in their
output decisions, take into account not only the imbalances of supply and
demand and differential rates of return but also the time derivative of the
differentials of rates of return. In many circumstances such a derivative
control term (cf. Flaschel, 1989) act$ as a stabilizing term. Unfortunately,
a proof of stability, provided in Flaschel (1989) for simpler cases, does not
carry over to our system (1”), (2), so that again we have to rely on eigenvalue
computations and simulations.26 :

22 Since they are, however, economically not very realistic, we here leave them aside.

23 Richard Goodwin, in a comment on an earlier version of our paper, has proposed that
we may allow for instability in our composite system, but we might want to be concerned with
how the trajectories are globally bounded. The subsequent section will explore this suggestion.

24 Note that, for reasons of simplicity, in the subsequent system the diagonal matrices of
the reaction coefficients also include the scalars as referred to in Appendix II.

25 For a formulation of a time continuous dynamics with derivative control term in time
continuous form, cf. Flaschel and Semmler (1987).

26 With the matrix Q as appearing in (9) we can write system (1), (2) (by dropping the constant
term since they do not matter for the stability analysis) as 7 = Qz. We may simply set the matrices
of reaction coefficients equal to identity matrices, then with

0 -C
=l o)
0 0

we can write our extended version (17), (2°) as = Qz + yBz, which gives a Newton-like form
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Simulation results for the same matrix as used in section IV.1, with
R =.9R*, and G = .75R*,, v,= 1,7, = 1000; and y = 5, are depicted in
Figure 4.

In the simulations, the*trajectories for (17), (2’) first moved more
erratically, but tended to smooth out fairly soon and finally converged
toward the steady state values p*, x*. :

In eigenvalue computations we again employed d; =1, d;=1I and 1,
Y, as reaction parameters for the dual and cross-dual dynamics,
respectively, and 7y for the derivative control term. The following results
appeared

G<R<R*
dmy, v v R*, R G  NMT NMR*, real part ratio

6 1 10000 .02 1.35 .9R*,_ .75R*. 1000 650 6 6/650
6 1 10000 .05 1.35 .9R*, .75R*_ 1000 670 0 0/670
6 1 10000 .1 1.35 9R*_ .75R*_ 1000 660 0 0/660
6 1 1000 .1 1.35 .9R*_.75R*. 1000 680 0  0/680
6 1 1000 .2 1.35 .9R*_ .75R*_ 5000 3300 0 0/3300

2 =(I— yB) - 'Qz. For simple cases Flaschel (1989) has shown that a strong y can always give
rise to stability of the modified dynamic system. This technique of the proof of stability, however,
does not carry over to our system (1), (2). This negative result follows from Saari and Simon

(1978).

[
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Table 4

The eigenvalue computations demonstrate that even very strong crossdual
reaction parameters, for instance 7, = 10000, can always be offset by a
small derivative control on the rate of return on capital. Derivative control
of type (10) seem to be very effective in controlling unstable trajectories.

Case 2: Derivative Control for Excess Demand Functions

Subsequently, the derivative control for the excess demand function
was tried. The following additional term was appended to (2')

ydy C(@) (%, 1 ) — x)[h = delc(g) d,C@x, — d,C»'p",+q) (11)

In terms of eigenvalue computations we obtained

G <R<R*
dmy, 1y, v R*;, R ‘G NMT NMR *, real part ratio
6 1 1000.5 1.35 9R*, .75R*_ 500 370 370 370/370
6 1 10 .51.35 9R*, .75R*, 500 360 360  360/360
6 10010 .5 1.35 9R*  .75R*_ 500 380 0 0/380
6 1 1000.51.35.9R*. .75R*, 500 390 390 390/390
6 100 100 .5 1.35 9R*_  .75R*_ 500 310 0 0/310
6 100 300 .5 1.35 9R*  .75R*, 500 330 40 40/330
6 100300 .51.35.9R*. .75R*_ 500 345 345 345/345
Table 5

For the derivative control of the excess demand function, stability does
not arise as easily as for the profit rate: only if y, is as large as 7, or larger
stability arises. !

Case 3: Derivative Control for Rate of Return and Excess Demand

The last case to be explored is when one allows for a total derivative
control. In this case (10) is appended to (1’) and (11) to (2°).

The following results were ontained from the eigenvalue computations
with random matrices and with 7,, y, the reaction coefficients for (10)
and (11).

: G <R<R*
dmy, v, 7574 R*, R G NMT NMR *, real part ratio
6 110 .5.51.35 9R*,.75R*;500 350 0 0/350
6 110 50.51.35 9R*,.75R*,500 340 340  340/340
6 1 100 50 .5 1.35 9R*_ .75R* 500 345 345  345/345
6 1100 5.51.35.9R*, .75R*, 500 352 352  352/352
6 1 100 .5.51.35 9R*,.75R*,;500 355 355  355/355
6 1 1000 5 51.35 9R*,.75R* 500 360 360 360/360
6 1 1000 .5.11.35 9R* .75R*,500 356 0 0/356
6 1 1000 .5.3 1.35 .9R*_.75R*_500 340 340 340/340

209



Table 6

As can be observed from Table 6, total derivative control generates
stability if either the cross-dual dynamics is only weakly connected to the
dual dynamics or the reaction coefficients for the derivative control of the
excess demand function are small relative to reaction coefficients of the
derivative control for the rate of return.

Case 4: Partial Derivative Control Selectively Applied

On the other hand, one might be interested whether bounded oscillations
arise when a derivative control term such as (10), which is essentially
stabilizing the dynamics, is applied only selectively, for example at outer
boundaries when the trajectories rapidly depart from the equilibrium. We.
have used the aforementioned Euclidean vector norm to define regions when
the control term (10) is to become operative in an otherwise unstable
system.?’ In this case, of course, stability analysis by computing the
eigenvalue of the system is no longer possible, The study of the local
dynamics will not be conclusive, since the local dynamics will always be
unstable. Simulations, demonstrating the global behavior of the system,
are provided instead. ' :

27 A simple rule was used here. We assumed that if the Euclidean norm exceeded a certain
number, we tried different runs with numbers between 6 and 12, then the control term (10)
was applied. ;
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When the additional control term (10) is applied selectively at outer
regions of the vector field,?® as in our latter case, the trajectories remain
bounded as depicted in Figure 5.

V. CONCLUSIONS

In this paper we have reconsidered and combined two formulations of
microdynamic adjustment processes. We have discussed the stability
propetties of the cross-dual and dual adjustment processes, first isolated
for each approach and then in composite form. In our view it adds realism
to microdynamic studies if both approaches are synthesized and their
dynamics studied jointly. In this way we may move closer to the study of
empirically relevant adjustment processes as observed by many econometric
studies (cf. Gordon, 1983, 1990; Taylor, 1980, 1986; and Semmler, 1984,
ch. 3 for a summary of such studies).

We have applied a fairly new approach to the stability of large scale
systems which seemed to be particularly well-suited for the type of composite
system we had to analyze. The obtained results have been extended by
means of computer studies. They suggest that stability will prevail even
if a much more general parameter variety and certain nonlinearities are
allowed for (in the above application of the decomposition-aggregation
method). Yet, it is also shown that there are definite limits for such a
generalizing conjecture. There exist a large class of systems which are easily
made unstable in the linear case due to a strong influence of the off-diagonal
coefficients.?? .

In that regard, the stabilizing aspects of derivative control terms for
the overall structure in particular was investigated in more detail. In such
situations the introduction of an additional force, for example stemming
from the time rate of change of the rate of return, has been shown a
convenient method for keeping the price and quantity fluctuations bounded.
As demonstrated, the application of such an economically meaningful
derivative control, globally or selectively applied, gave rise to stability (or
at least bounded fluctuations). Derivative control on excess demand
functions, in contrast with a derivative control on the rate of return,
appeared to be less effective for stabilizing unstable trajectories. If both
types of derivative control were applied to our system (1), (2'), stability
is not as easily obtained as for the derivative control of the rate of return.

With regard to the realism of such composite adjustment processes, one

28 T future specifications the derivative control, instead of being applied in the above bang-
bang fashion, might be utilized in a more continuous way.

29 Tn Flaschel and Semmler (1989b), there are also systems reported, though economically
not very meaningful ones, that ate unstable independently of the reaction coefficients.
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should express some caution since our modeled dynamics builds on a fairly
simplified version of effective demand. Moreover, we have not analyzed
the feedbacks resulting from supply constraints (labor, other inputs, or
finance) to the output and price dynamics and the like. In addition, in
studying the composite dynamics we worked with a (square) constant
coefficients’ matrix, which implies that process and product innovation is
abstracted from.>® However, the proposed synthesized dynamics of cross-
dual and dual type appear to be interesting enough to encourage further
extensions and generalizations in future research.

APPENDICES

Appendix 1

In what follows, we want to briefly outline the decomposition-aggregation
method of connective stability analysis following Siljak (1978), and then
apply this method to our composite Keynesian-Classical system.

First, connective stability has to be defined. One-shot stability analysis
attempts to prove stability for a dynamic system.without going through
an analysis of its basic component parts. In a composite system with
interconnected basic subsystems, however; a composite type of stability
analysis may be more appropriate than the well-known single step approaches
to stability by means of single Liapunov functions. Hére, one attempts to
show that a dynamic interconnection, properly limited, will remain stable
when stable, isolated subsystems are aggregated in various ways. Overall
stability may arise, even in the case when some subsystems are unstable,
but their influence on the overall dynamics is limited. This type of stability
analysis is termed ‘connective stability’ in Siljak (1978).

Roughly speaking, connective stability means that the fully connected
system (described by an interconnection matrix E) is stable as well as ‘all
of its structural perturbations which do not remove one of the self-contained
subsystems from this structure, i.e., which contain at least the initially given
decoupled substructure. Since in our case the Keynesian dynamics represents
the self-contained and asymptotically stable subsystem, we consider this
as the basic subsystem and the classical dynamics as a subsystem connected
to the former. Switching on and off the classical dynamics can be regarded
as a perturbation of the Keynesian dynamics. On the other hand, switching
on (or off) Keynesian types of adjustments in the classical context demands
an analysis of partially stable composite systems which was not attempted
in this paper.

?0 For an extension of the cross-dual approach to the cases of process and product innovations
and extinctions, cf. FLascHEL and SEMMLER (1990).
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Interesting methods for studying connective stability for composed
systems by a decomposition-aggregation procedure are provided by the
concepts of vector differential inequalities and vector Liapunov functions
as elaborated in Siljak (1978, ch.2). In what follows we want to briefly
outline this decomposition-aggregation method of connective stability
analysis following Siljak, and then apply this method to our composite
Keynesian-Classical system.

The connective stability of the equilibrium z* = 0 of a system composed
by connecting stable, initially isolated systems can be investigated in three
steps.

First, one formulates an interconnected dynamical system from the
knowledge of its basic componets, their internal dynamic structure and
various conceivable interactions between these basic components. In general
this may result in a complicated system. In our case (1), (2) this general
-approach can, however, be reduced to the following system:

St t=Ann+epdnz,

o (A1)

8,0 L=Apz,+ e Az
In this system the matrices A,,;, A,, represent the independent Keynesian
subsystems and e,,, e, represent the elements of an interconnection
matrix E, which, for symplicity, can be set to 1. The first part of (A1) thus
represents the decoupled system which is not modified by the structural
perturbations allowed for.3!

Second, the asymptotic stability of each decoupled system in (Ax):
7=A,z, t=A,z, is assumed as given (or proved). As Liapunov
functions for the isolated subsystems A,,, A,, we can then take

v, (zy) = (2, "Hy2)", 0,(2,) = (2, H,2,)"” (A2)

1\the:re the positive definite and symmetric matrices H,, H, are determined

’ Z11 ,Hl + lell = —1, Z22 ’Hz + szzz = -1 (A3)
The total time derivatives of (Az) are [see (A3), (i =1,2)]:

»; = (grad v)) % = (grad v) ’Zl,z1

= (v;"'H;z) Az = — (1/2)v;7 ! (4'2). (Ag)

From (Az), (A3) and (A4) estimates for these Liapunov functions are then
produced as follows (i = 1,2; note the minus sign in (Ag4)):

HZle,H == 0;'2”25“, ;=< - 9;'3”2’,‘“; ngad UZ‘H = 07‘4, (AS)

31 Note here that Stjax (1978: 33) uses a different notation to represent this case and that
he in general allows for further feedbacks of z; on 2z; which may be switched on and off through
e; and structural perturbations.

213%



with the following positive scalars 6
0= Q,"(H), O = L2y (H)) ,
g1 g Og)
20,42 (H) Q. (H)
Here Q,, and Q,, denote the minimum and maximum eigenvalues of the
symmetric and positive definite matrices H,, H,.

Third, the functions v,, v, are representatives of the stability of each
subsystem A,;, A,,, and we can now study the stability of the aggregate
system § composed of §,, S, by considering appropriate compositions of
these two stability indicators, no longer considering the dynamic interaction
within each subsystem in its details. The total time derivative along the

solutions curves of each interconnected subsystem S; of (A1) is (, j = 1,2):
0; = (grad v)) %
= (grad v) "[A;z; + e; Azl = 0;(A4) + (grad v) e; A;z; (A6)
where ©; (A4) is given by (A4). This gives rise to
1'11' = - 6,'3”2;‘“ + eiilfgrad Uj“ :”Azij” (A7)
jxqfhich together with the constraint on the nonsymmetric interaction matrix
4
| Azl < €112l €5 = Q' (A, Ay) (A8)
finally gives (because of the minus sign in (A7)):

; ~1 -1
< — 0,7 0,0, + e, 6,00, 0,

(A9)
D, < €6, 0,0, v, — 0y, M50,

This system can be rewritten by means of the vector Liapunov function
v = (v,,0,)’ as one vector inequality

v < Wo. (A10)
where the aggregation matrix W is defined by (7,7 = 1,2):

-1 )

Wy = {e-. 6912 6. _? ’ Z,—7f (AII)

ij Sif Vil @4 5 1#7,

The connective stability of the overall system then follows from a stability
proof for the aggregated system (A10). In order to prove this result, Siljak
(1978, ch.2) introduces the comparison principle for vector differential
inequalities by majorizing the function v appropriately. This principle uses
for comparison the differential equation

= Wr
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with the initial condition v, =7, and W the aggregation matrix
corresponding to the fundamental interaction matrix E

— — 0,71 05, i=7,
wz-,/= ) i (AIZ)
07.1“1 4 s Z¢7)

If the matrix W is stable and if we know (for all of our interconnections)
v(t) < r(p), t=t,
then one can conclude that lim v(#) = 0 holds true for all such E.
{— >0

We thus obtain connective stability, as defined above, for the whole
system §.32

The above type of decomposition-aggregation analysis by means of vector
Liapunov functions consequently gives rise to the following

Theorem: Given that (1) asymptotic stability of each decoupled subsystem
is established and described by the estimates (A5) obtained for the Liapunov
functions v, and v,, (2) the constraints (A8) on the interactions A,,2, and
A, z, between the subsystems S; and S, hold, and (3) stability of the
aggregate matrix W corresponding to the fundamental interconnection
matrix 3 has been proved, then the system S is stable for all interconnection
matrices E, that is, it is connectively stable.

A variety of additional related stability concepts and theorems other
than the above are investigated in Siljak (1978) and Michel and Miller
(1977). The interested reader may consult this literature and the more
detailed application of theorems to be found there to the classical-Keynesian
composite dynamics in Flaschel and Semmler (1989b).

Two important final remarks may be added concerning extensions of
the above theorem.

Remark 1: For a dynamically reliable large-scale system one would expect
that the system is allowed to disintegrate itself and then to reintegrate itself
during its functioning. The above discussed class of structural perturbations
can be generalized into this direction by means of time-dependent
interconnection matrices E (#) to allow for on-off participations of subsystems
in the course of time (cf. Siljak, 1978).

Remark 2: In even more general terms, it is also not necessary that all
connected subsystems are stable when isolated. Unstable subsystems may
be permitted to be parts of a large composite system provided, of course,
that sufficiently strong stabilizing cross-feedbacks are present at all time.
When interconnection matrices are carefully chosen, unstable subsystems??

32 Cf. Siyak (1978:37ff.) for further details.

33 Thus, in the context of our system above the price dynamics sketched in (3) — or, in
general, a price dynamics stemming from an excess demand function — can be allowed to be
unstable and its instability still might be turned into stability through the interconnection with
other stable subsystems.
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can be allowed for and the system may nevertheless exhibit connective
stability, cf. Siljak (1978, ch. 2.6).

Appendix II. Search for Unstable Matrices through Eigenvalue Computations

1. The eigenvalue computations were undertaken with randomly
generated matrices. As reported in section IV several size classes of random
matrices were explored. To illustrate the type of random matrices employed
and to exemplify how a matrix can become unstable through a variation
of the off-diagonal reaction coefficients, we take a 6 dimensional random
matrix A and compute the eigenvalues for a matrix Q (which depend on
the reaction coefficients). A matrix A being generated was for example:
~.0776 .1453 1439 .06978 .1426 .1073 -
03498 .1225 .1441 .1246 .1558 .1321
1017 .09612 .03554 .05683 .04618 .1454
A215 1347 1167 1616 .1013 .04532
1363 02503 .04135 .02869 .05348 .002448
L1083 .05687 .09887 .1390 .08112 .1479 _

The A matrix above has a R* = 1.7224. The corresponding matrix Q is
Q= [Tlduc © = 71dC (7’)/J
T2d21C (g) Tldzzc (n’
For G=1.1 and R =1.6 and with 7,=1, 7, =1000 we get the
following eigenvalues for the matrices Q,, Q, and Q.

A=

Eigenvalues of

Qk Qc,l Q
Real part  Im. Part Real Part  Im. Part Real Part  Im. Part
- 0.361 0 1.42 — 13 157.5 - 0.209 157.5
~ 1.086 0 1.42 - 13 - 157.5 -0.209 - 157.5
- 1.012 0.07 -42 -14 1158.5 - 1.146 1158.5
- 1.012 - 0.07 -42 ~-14 - 1158.5 - 1.146 - 1158.5
-~ 0.934 0.04 -1.59 - 14 1059.7 - 1.055 1059.7
—-0.934 - 0.04 -1.59 - 14 - 1059.7 - 1.055 - 1059.7
- 0.07 0 -1.77 - 15 993.4 -0.98 993.4
- 1.126 0 =177 - 15 - 993.4 -0.98 —-993.4
- 1.017 0.1 - 6.35 901.6 -~ 7.24 901.5
- 1.017 - 0.1 —6.35 - 901.6 —7.24 -901.5
—0.904 0.05 6.35 901.6 5.45 901.5
- 0.904 ~ (.05 6.35 —-901.6 5.45 -901.5



Table Al

Note that Table A1 shows that in a case when asymmetry of the matrices
for Q, (and Q,) is lost, the cross-dual dynamics can become unstable
(G#R). With scalars of reaction coefficients y, =1, y, = 1000, the
corresponding composite  matrix has a pair of real parts of eigenvalues
Amax(A) = 5.45, indicating that the composite matrix Q is unstable. A
decrease of 1, to 100 resulted in no positive real parts of the eigenvalues.
The composite matrix Q became stable. A further decrease of v, to 1 kept
" the composite matrix Q stable. The matrix A above with y, = 1000 for
the off-diagonal terms in the appropriate Q matrix was used for the
simulations in sect. IV, Figure 4, above.?

2. Types of counterexamples as the one above have motivated us to
introduce a derivative control term, since the negative feedback of the dual
system is in general insufficient to turn the center-type stability of the cross-
dual system (or its instability as in the case above) into stable trajectories
of the composite system. Derivative control as discussed in section IV.2
above can again turn an unstable matrix Q into a stable one,

Department of Economics, New School for Social Research, New York.

34 There also exist systems where instability prevails somewhat independently of reaction
coefficients (FLascHEL and SEMMLER 1989b, Appendix). Of course, even though, as in this case,
instability may prevail, there always exist reaction coefficients, as also demonstrated in FLASCHEL
and SEMMLER (1989b), that render the system stable (since our composite system is HICKSIAN).
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