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Gravitation Processes and Technical Change:
Convergence to Fractal Patterns and Path Stability

Ulrich Krause*

I. INTRODUCTION: SETTING THE PROBLEM

“We must consider stability of motion rather than of a point”. (M. Morishima
in a discussion remark at the Siena Conference 1990).

The classical economists developed the idea of prices gravitating towards
so-called prices of production as center of gravity. (Cf. [8], [20]). Cum grano
salis, the classical idea in its original verbal formulation looks rather simple
and not implausible. However, the attempts of numerous authors, to state
the classical idea of gravitation in precise terms and to argue carefully for
its validity, show a different picture. Today, there is a supply of quite
different models, some refuting the classical idea, some confirming it, though
by using additional hypotheses, and some doing something in between.
Moreover, along with the modeling of the classical idea of gravitation, a
whole bunch of technical problems, a few of them nice but many of them
nasty, began to throw the original charming little idea into the shade. As
disappointing as this may be, what I consider to be a positive byproduct
is a widespread awareness concerning the issue of dynamics.

In the following pages I would like to deal with a topic which I consider
an important one for dynamical processes in general and which shows up
in particular for gravitation processes if technical change is admitted. To
my knowledge, technical change, and even the choice of techniques, has
been left out of consideration in almost all discussions of gravitation
processes. (Choice of techniques is considered in [5 ,6], [13], and in
connection with technical change in [10]). This I consider a major drawback
for several reasons, one being that technical change should not be excluded
from models where time approaches infinity.

The idea of a gravitation process may be, without specifying technical
details, modeled as a dynamical process by which all the entities considered
are attracted to one single center of gravity. Since in economics it has proven
to be useful to model dynamical systems in discrete time, in what follows
I shall consider discrete dynamical systems. Such a system in its simplest
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form is given by some set X of entities (like prices or price-quantity pairs
as in cross-dual models) together with a selfmapping of X (“the law of
motion”). The motion starting from a point x, of X is described by the
path (orbit) {x,, f(%,), 2(%,),...] where f* denotes the ##h iterate of f. If x*
is a center of gravity for the dynamical system (X,f), then f*(x,) should
approach x* for any x, and ¢ approaching infinity. But why should there
be anything like a gravitation center? An appealing intuitive idea, which
is often implicit in verbal descriptions, is that of a law of motion f which
brings any two points closer to each other. In fact, for such a contraction
f the gravitating behavior asked for takes place. (By Banach’s contraction
mapping principle, provided some technical requirements are met). Now,
the question I will address, is, what happens if the law of motion f itself
changes in time? An example of the latter is the change of techniques during
the process of gravitation, because the mapping / (the difference equation,
the differential equation, or systems of these) depends on the technology.
Such a change in f may be caused also by other circumstances. E. g., for
a fixed but nonlinear technology (i.e. unit costs do depend on the level
of output) a change in the output may take place and modify the law of
motion (cf. [14)]. The answer to the above question of what will happen
depends, of course, on the properties of the particular system under
consideration. A special kind of technical change which does not destroy
the gravitational process is examined in [10]. However, this is not what
one would expect in general. Quite the opposite will be the case in general,
namely the feature of gravitation disappears and there will be no convergence
to long-period positions. This is due to the several different techniques
which act as several gravity, centers. The whole situation reminds one of
Buridan’s ass, and the resulting dynamics looks like fluttering around
between several goals. A new phenomenon arises in that the dynamical
system, instead of approaching a single point, approaches a so-called fractal
set, which may be quite complicated. Nevertheless, a stability property called
path stability still holds, meaning that any two paths finally come arbitrarily
close to each other. This may also be viewed as a stability property of the
motion itself, since any path, when perturbed, comes back finally to its
original motion.

- What has been said in broad terms in this introduction is explained
in more detail in section 2 by means of a simple concrete example. Section
3 makes precise the idea of path stability in general and presents a condition
when this property holds. Section 4 reports briefly on path stability for
prices in Leontief models, even nonlinear ones, and has a look at the theory
of positive discrete dynamical systems which is behind it.
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2. A SIMPLE EXAMPLE OF TECHNICAL CHANGE

The example I shall discuss is extremely simple and highly stylized and
it is presented only for illustrative purposes. The simplest case will be
considered, that is, there will be one commodity only called ‘corn’ which
serves as input and output of production as well as consumption good. There
will be two techniques only, which are used to produce corn in two different
seasons, say ‘summer’ and ‘winter’. The change of techniques simply consists
then in switching from one technique to the other following the natural
order of the two seasons. More precisely, suppose the ‘summer-technique’,

. 1 . .
s-techinque for short, uses = units of corn but no labor to produce 1 unit
.. 27 .
of corn. (The remaining 3 units may be used for consumption). As corn

growing is more difficult in the winter, the corresponding w-technique

. 1 . . .. 2 .
uses, besides the 3 units corn for sowing in addition 5 units of - labor.

(Although the numbers are completely fictitious, there is some reason for
choosing precisely these numbers, as will be seen later on.) The dynamics
I am interested in, is that of prices, for which it is-assumed that the corn
price in period ¢ + 1 equals the cost of production in period £ (The implicit
assumption of no profits is made only to keep things simple. For the case
of profits see section 4.) This idea of prices driven by costs is also part
of classical economics (cf. [1]). If p, denotes the price of corn per unit in
period ¢ and the wage rate is set 1 without loss of generality, then the
dynamics determined by the w-technique alone is given by

1 2

3273

Assume for a moment that only the w-technique is applied and there is
no technical change. Then a simple calculation yields

2. 12 1\? 2 1\~ 2 1\*
Pi1=fp)=5+>= (——) = ...+<~) -—-+<—->
s =re)=5+33+(3) 5+ 3 53 &

Pivs =f(pt) =

Since <—3’1-) ‘5, converges to 0 for p, arbitrary if # approaches infinity,

one obtains by using the formula for the geometric series that
' 2 1

That is, corn prices gravitate, irrespective of the initial price p;, to the
center of gravity p*= 1, which in fact is also the unique equilibrium
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for the production price equation p = % p + —? Similarly, if only the
s-technology is applied, the dynamics is given by p,,,=g(p) = % P
and corn prices tend to the center of gravity p** = 0, which is the unique

equilibrium for the production price equation p = %—p. The crucial point

now is that in considering technical change we have to consider both
techniques together, one alternating with the other, beginning with, say,
the s-technique. Hence the dynamics for (this kind of) technical change
is given by so-called inhomogeneous iteration... fo g © f0 g(p, ), where the
expression has to be read from right to left and where “0” denotes
composition of mappings. A simple calculation yields the more precise
description

~ { (fog)t/Z ) for ¢ even (%)
Pri1= go(fog®=b2(p) for ¢ odd '

One might say that there are two centers of gravity, 0 and 1 respectively,
to which the corn price is attracted alternately due to technical change.
Will the corn price gravitate? Maybe converge to some average, maybe to

1 . . . .
5 ? The answer is ‘no’ which can be seen as follows without knowing the

dynamic behavior in detail. Consider the composite law 4 = f© g which is
2

3 Similarly as above for f, one calculates

given by h(p) = %p +

i} ‘_2 1 2 1;1—12 lﬂ
Prns1=h @l>—-3+9-3+...+(9> 3+(9> Py
d

E)
R
From the description (*) one gets for odd #=2n + 1

to find lim p,, , =
7> o0

] ) 1
lim s, =lim gO(ng)ﬂ(pa;-g(%):Z.
[7/Ran e vl

Because of % # —Zf the conclusion must be that the sequence of prices does

not converge in the case of technical change. Whatever the price path may
be, it can be said that the path will be finally independent of the initial
price p;. Namely, let p, and ¢, be two different initial prices and let p, and
g; be the corresponding prices in period ¢ as determined by equation (*).

3 3 1 1
Then p,, 1 — 95, + 1 tends toz———4—:0 and p,, — ¢,, tends toZ~-4f =0,
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1 2 100 12 1
3 3 3 3

Figure 1 - Cantor set (stage 3)

Hence p, — ¢, tends to O for #— o, meaning that two arbitrary paths
finally become arbitrarily close to each other. This property is called path
stability. (In the next section it is shown that this property prevails in a
rather general setting.) It can be seen, by direct calculation or by general
arguments as in section 3, that path stability does hold also for the following
kind of technical change in the simple example under consideration. Instead
of applying them strictly alternately, the two techniques may follow each
other in some arbitrary but fixed manner like... g © f0 g0 g o g o f(p).

But what can be said about the detailed behavior of a typical path?
%p +~§~and glp) = %p map the unit
interval [0,1] into itself. Hence the dynamic system (*) stays within [0,1].
In particular, there is at least one path contained completely in [0,1]. By
path stability it follows that for any starting point p, = 0 the path stays
finally in [0,1]. It is even true that g maps the interval [0,1] into the interval

[0, %—] and that f maps [0,1] into [-32— , 1} . If one uses this fact at every

Obviously, the mappings f{p) =

stage of the inhomogeneous iteration, it is easy to see that every path is
attracted by the so-called Cantor set as is indicated in the following figure.

The Cantor set is obtained as follows, from the interval [0,1]. First,
the interval [0,1] is divided into three intervals of equal length and the
(open) middle-interval is removed. Then each of the remaining intervals

[O, -—;—] , [—?—, 1] is again divided into three intervals of equal length and

the (open) middle-intervals are removed. Etc. In the limit the Cantor set
is obtained which is the simplest of the classical fractals. (For fractals cf.
[2], [x7].) That the Cantor set is an attractor for the dynamic system under
consideration may be expressed also by saying that every path must finally
be contained in any given set obtained at some stage of the Cantor set
construction. To summarize, it has been shown by means of a simple example
that, in the case of technical change, prices do not gravitate towards a single
price but towards a price pattern which is contained in some fractal set.
For any given type of technical change this price pattern may be simple
and represent only a small part of the Cantor set. For strictly alternating
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. . . . 3
techniques, e.g., the price pattern consists of the two points y) and 1

Depending on the type of technical change, the limiting price pattern may
however be any subset of the Cantor set. In case the two techniques change
in a purely random manner, then, in fact, the limiting price pattern fills
the whole Cantor set.

In a manner similar to that for the extremely simple corn example one
may also analyze the multi-commodity case as it is studied in Leontief or
Sraffa models. Since fractals are geometrically interesting only from two
dimensions onwards, I shall briefly comment on what will happen for two

commodities. Consider three techniques (A“), l(")) fori=1, 2, 3, where
AY is the 2 X 2 input-output matrix and /% is the 2-vector of labor inputs.
Suppose these techniques are simply as follows:

05 0 0 0.5 0.25
W 4@ = A0 = W= @ = 6 =
4 A¥=4 [ 0 0.5} ! [0} ! [ 0 } ! [0.4331] '

Let f,, /5, /; be the cost functions induced, with wage rate equals 1,
and suppose that the price of the next period is given by the costs of this
period. Again, taking only one single technique (4, )) into account, there
exists a unique solution p* to the Sraffian system p = p A + / of production
prices, and prices set by producers do converge for all initial prices to p*.
The picture becomes drastically different if change takes place between
the three techniques. It turns out that, whatever the particular way of change
between the techniques, the limiting price pattern must be part of the so-
called Sierpinski triangle as indicated in the following figure (cf. [2]).

Figure 2 - Sierpinski triangle (stage 3)
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Again, from the general principle shown in the next section it follows
that path stability still holds there.

For illustrative purposes the numbers in the above examples were choosen
in such a way as to arrive at the simple classical fractals shown. Using other
numbers, other, and partly more complicated, fractals would result. (On
the fantastic world of fractals see [17].) The process referred to of getting
fractals by randomly playing a finite number of affine mappings is also called
the chaos game. (For a detailed analysis of the game see [2].) Of course,
to treat technical change propetly one has to admit an infinite sequence
of techniques, which induces an infinite sequence of cost functions i s
£, ..., [, being the cost functions in period n. (In continuous models of
technical change the case is even worse, since technology depends
continuously on the time variable t.) The detailed behavior of paths in this
case has not yet been explored. It will follow, however, from the next section
that here too path stability does hold, provided a certain condition is met.
(Cf. also [11].) This issue as well as the question of what will happen if
profit is no longer zero or if the technology is not longer linear will be picked
up in section 4.

3. THE GENERAL IDEA OF PATH STABILITY

To get a clear concept of path stability as well as to capture more difficult
situations (as in the next section) it is worthwhile to put certain aspects
discussed in the previous section into some more abstract framework.

Let X be a (nonempty) set equipped with a metric d for measuring
distances on X. Assume that the mewic space (X,d) is complete. Examples
from the previous section are X = R, or R?, and d given by the absolute
value and the Euclidean metric, respectively. (Thereby R”, = {(xy,...%,) [%;
e R, x,20 for i=1,...,n).) Let f be a selfmapping of X which is a
contraction for d, i.e. there exists some factor of contraction 0 < ¢ < 1 such
that d(f(x), /() < cd(x,y) for all x, y ¢ X. Examples from the previous

section are the mappings f(x) = %x + %, glx) = —31— x on R, and the

mappings f;(x) = AP + 1¥ for i=1,2,3 on R?, (with metrics as
mentioned before). As has been pointed out in section 1, a contraction may
setve very well as a model for a gravitation process. Indeed, Banach’s
contraction mapping principle yields that for a contraction f there exists
a unique equilibrium x*, i.e. f(x*) = x*, and for any starting point x in X
the path {f*(x)|# = 0] gravitates to x,. This harmonic picture is destroyed
if, instead of iterating one and the same f, (so-called homrogeneous iteration),
several different contractions are used in the process of iteration (so-called
inhomogeneous iteration). The multiplicity of contractions brings about a
multiplicity of centers of gravity which may create a very irregular motion.
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(But, fortunately, there will be no gravitation between the centers of gravity
themselves.) Nevertheless, path stability holds, as will be seen in 2 moment.
Let F be an arbitrary family of contractions on X and let ¢r be the
contraction factor of fin F. Consider a mapping M : N = F which specifies
for every natural number # a function M(z) within F. An M-path on X is
defined recursively by x, . ; = M(#)(x,) together with a starting point x,
in X. The system (F,M) is said to possess path stability whenever, for any
two M-paths, it holds that the distance d(x,,7,) converges to 0 for 7 — o,

Lemma 1t sup {¢lf ¢ F} <1, then path stability holds for every
specification M.

Proof By the definition of contraction factors, it follows with ¢ = sup {¢/|f
e F that d(f(x), /(y)) < cd (x,9) for all x, y in X and all /in F. Using induction
on 720 one obtains for any two M-paths starting from x, and 9,
respectively

d(x,, +1 Vnr) S Cﬂd(xm%) (*)

For, inequality (*) is true for # = 0. If (*) holds for n, then it follows
that  d(x,,,,9,.,) = dM(m+1)(x, , ), Mn + D@as)) secdx,
Yus1) S€-c”dlx,y) =" 1d(x;,y,) by using the induction hypothesis.
This shows (*). The lemma then follows by letting #— oo in (¥).

A system x,, , ; = M(n)(x,) as in the lemma one encounters in the case
of technical change. The set F represents thereby the, possibly infinite,
set of techniques, or rather, the cost functions for these techniques. M (»)
is the technique chosen in period #. According to the lemma, path stability
prevails if the cost functions are contractions for some suitable metric and
the contraction factors are all bounded from above by a constant less than
1. The latter assumption is sdtisfied, of course, if the family F is finite.
Just how useful this little lemma can be may be seen by looking back at
the calculations made for the example in the previous section. As is shown
by this example, path stability for inhomogeneous iteration does not
necessarily imply convergence to a single point. Path stability may b viewed
as a kind of stability of motion in the following sense. If the particular
kind of motion exhibited by a path is disturbed from the outside, then,
after a while, the disturbed path must show the same kind of motion as

the original path.

4. PRICE DYNAMICS IN LEONTIEF MODELS

In this section, I shall sketch briefly how one may obtain path stability
even in nonlinear Leontief models. (For a detailed analysis, see [14].) The
examples discussed in section 2 belong to the realm of Leontief or Sraffa
models. The first and outstanding contribution concerning the problem of
price dynamics in a linear Leontief model was made in [15]. Further
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contributions comprise [3], [5, 6], [7], [10], [13]. Things become much more
difficult in nonlinear Leontief models where the input-output coefficients
are admitted to depend on the quantities of the goods produced. Fortunately,
valuable work has already been done on nonlinear Leontief models, in
particular in [15], [16], [19]. Actually, in [19] some kind of nonlinear Perron-
Frobenius theorem has been developed, including the stability part, which
then has been generalized in [15] and [16] and which has been proven to
be very useful. More recent contributions are [4], [9], [12], [18]. However,
all the work quoted on nonlinear Leontief models is not concerned with
the dynamics of prices, but with the dynamics of quantities only.

The underlying philosophy for the nonlinear case is the same as for the
examples discussed in section 2, viz. the classical credo of prices driven
by costs ([1]). In a nonlinear framework, however, the minimum cost to
produce y units of a commodity does depend on the quantity y as well as
on prices and the wage rate. Hence there are several possibilities, to choose
the relevant cost that drives the price of a particular commodity. Examples
of relevant cost are marginal cost and average cost, respectively. Leaving
special problems in treating the wage rate aside (cf. the different approaches
in [5,6] and [14]), the relevant cost functions in a fixed period may be put
together to obtain the cost operator T, which is a nonlinear selfmapping
on R”,. Thereby, # is the number of goods and the i-zh component (Tp),
of Tp is given by the relevant costs of producing a given amount of good i
in the fixed period. In the linear case, e.g., and without choice of techniques,
one would have Tp = pA + /, if w = 1 is given, and Tp = pA, if w = pc for
some fixed consumption bundle ¢ (4 the augmented input-output matrix).
Admitting profits, however, one ¢annot simply take T to be a function as
in the previous section to define the dynamics. Also, the mapping T need
not be a contraction for some metric. If, e.g., in the linear case Tp = pA,
then iterates of A need not be convergent. For these reasons one proceeds as

/)
follows. Prices are normalized by, say, |Ipll = X p;. The relevant space of
i=1

prices then is X = { peR”| lpll = 1} . More important, the mapping
T is also scaled down as f(p) = ”—%%T - f is a selfmapping of X and turns
out to be the appropriate kind of function in the sense of the previous
section. A suitable metric on X is given by Hilbert's projective metric, with
respect to which / becomes a contraction, provided T meets some plausible
properties of positivity (which are needed also in the linear case). By the
way, even in the linear case the scaled down version f of T in general is
not linear, Whereas in the linear case one uses Perron-Frobenius theory,
some nonlinear version of this theory is needed in the nonlinear case. More
generally the tools needed are from the very recent branch of positive discrete
dynamical systems. Using these tools (cf.[11]), one may obtain path stability.
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In the case of technical change, instead of a single cost operator T, one
has to consider a sequence T, #=0, 1,... of these operators. To the
sequence of the corresponding normalizations f, the lemma of the
preceding section may be applied. The path stability obtained is an
interesting property even in case of a linear technology. Another interesting
case is that of output-dependent price dynamics for the nonlinear model.
The problem in this case is that, even if the techniques do not change,
the cost operator T will change with a change in output. As in the case
of technical change, this destroys the process of gravitation, because of
different centers of gravity belonging to different outputs. Nevertheless,
it can be shown, in a manner formally very similar to that in the case of
technical change, that path stability still holds.

5. CONCLUSION

The good old idea of a gravitation process needs to be formulated anew
in the presence of technical change. More generally, a new formulation of
this kind is needed in all cases where relevant circumstances change in time,
as for example outputs in case of a nonlinear technology. The new
formulation presented in this paper is by inhomogeneous iteration within
the field of positive discrete dynamical systems. Broadly speaking, this
method allows one to handle the phenomenon that the center of gravity
itself does change during the process of gravitation. By means of simple
examples it has been shown that for inhomogeneous iteration convergence
to a single point can no longer be expected but, instead, convergence to
some fractal pattern. Despite the possible irregularity of each single path,
however, path stability still holds. This means that any two paths come
finally arbitrarily close to each other. This may be viewed also as a stability
of motion, in that any path, when perturbed from the outside, after a while
shows the same motion as before. Furthermore it has been shown that path
stability is quite a universal feature in the realm of gravitation processes,
in the sense that any process which is obtained by mixing (finitely many)
processes of gravitation — the result of which is not a process of gravitation
in general — does show path stability.

FB Mathematik und Informatik, Universitit Bremen.
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