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Cross-Dual Dynamics,
Derivative Control and Global Stability:
A Neoclassical Presentation of a Classical Theme

Peter Flaschel”

1. INTRODUCTION

In this paper we continue an investigation on the stability of Walras’
cross-dual dynamics for production economies we started in Flaschel (1991).
This dynamics - though formulated as a tAtonnement process — is very similar
in its formal structure to the classical characterization of capital movements
due to profitability differentials and the effects these movements have on
market price formation. This paper can therefore also be viewed as a
preliminary study of some basic dynamic features of the Classical view on
the convergence of market prices towards prices of production or the
Marxian view of the gravitation of the former around the latter.

Yet, since we start from the neoclassical general equilibrium framework,
it must be stressed right from the beginning that this paper does not consider
prices of production and the formation of normal or average profitability
in a capitalist economy and that it — by its use of taitonnement adjustment
processes — also ignores many feedback mechanisms as they certainly exist
in real world economies. The advantage of such an approach, however, is
that the model we shall use in the following is well documented and
understood — so that it will be sufficient as well as more suggestive to
consider it in its simple form: the one-input one-output case.! Furthermore,
reducing the problem of a cross-dual dynamic process to a tAtonnement
procedure may help to lay bare the essentials of such a process for which,
in our view, there does not yet exist a generally accepted description. This
paper, for example, will investigate in particular the stabilizing contribution
of so-called derivative forces, which have rarely been considered in the
literature so far. In order to study their effect i isolation, a tAtonnement
procedure may thus be a good starting point from the methodological point

* T have to thank G. Duméni, R. Frankg, R. Goopwin and W. SEMMLER for helpful
comments and suggestions. Usual caveats apply.

! All propositions in the present paper also hold for the multi-sectoral general equilibrium
models [as they are used] in Mas-Colell (1986).
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of view. Finally, global results can rarely be achieved for dynamic
mechanisms which attempt to incorporate further important features of
the real world — as the literature on classical gravitation processes in
particular shows. It may therefore be of interest to find certain prototype
mechanisms for which global stability can indeed be proved [as in
Flaschel/Semmler (1987) or — from a quite different perspective — in the
present paper] and to study more ‘realistic’ versions of such processes by
means of computer simulations later on.

The following section will provide an introduction into cross-dual
dynamics as well as its automatic derivative control by making use of the
one-input one-output model of general equilibrium theory. Section 3 will
then study global properties of the derivatively controlled cross-dual
dynamics by means of an appropriate Liapunov function. Section 4, finally,
will present some computer simulations for the example that is used in Mas-
Colell (1986) by adding various derivative control mechanisms to the well-
known impacts of excess demand and excess profitability. In this way a
variety of stability scenarios can be created — depending on the adjustment
functions that are used for derivative control. This final section therefore
indicates that the choice of (variable) adjustment speed may represent a
crucial step in the further analysis of the stability of capitalistic market
economies.

2. WALRAS’ CROSS-DUAL DYNAMICS AND DERIVATIVE CONTROL

In Mas-Colell (1986) the one-input-one-output case of general equilibrium
models is used as an example®to illustrate some global stability properties
of a cross-dual type of Walrasian tAitonnement procedure [motivated by
Mas-Colell by referencing’ to Walras’ writings on disequilibrium in
production economies]. With regard to its local properties this dynamic
process is formulated and analyzed in Mas-Colell’s article in great generality
and detail. But with respect to global questions no general conclusions are
reached in his article. For the one-input one-output case of general
equilibrium analysis some interesting features are, however, noted by Mas-
Colell.2

We shall reconsider in the following this dynamics for this simplest of
all general equilibrium models, too — in order to design, explore, and
illustrate quite natural and important extension of the above cross-dual
dynamics in a way as instructive as possible.> In contrast to Mas-Colell’s

2 Note here that disequilibrium profits are neglected in Mas-Colell’s partial-equilibrium
investigation of this basic situation. These profits will be included in our presentation of this
basic situation.

3 The propositions which we shall formulate in this article, however, all hold for multi-
sectoral economies as well, as can easily be shown by applying the following proofs to the model
used in Mas-Colell (1986).
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statements on the stability of Walras’ cross-dual dynamics our extended
adjustment process will exhibit very strong global stability properties when
derivative forces are assumed to exist globally, i.e. here, at least for larger
discrepancies in profitability or in supply and demand.

In Flaschel (1991) we have shown that cross-dual dynarmcs can lead
to universal local asymptotic c stability (independent of economic structure)
when derivative forces are added in a particular way (by means of a single
adjustment parameter). In the present paper we shall show how similar
results can also be achieved for the global point of view and specific
adjustment coefficients. However, such an attempt to prove global asymptotic
stability may not be sensible from two points of view

e the choice of the size of parameters to achieve global asymptotic
stability may be too extreme

e the derivative forces used to improve the stability features of the cross-
dual dynamics may be operative only for larger discrepancies in the
basic magnitudes that govern the laws of motion of the system thus
leading to global, but not to global asymptotic stability.

This latter argument indeed is an important one,* since dynamic reactions
should not be fine-tuned to such an extent that insignificant differences
are assumed to give rise to distinguishable reactions of the economic agents.
In particular from a classical perspective it is very plausible that profit-
differentials must reach a certain critical level before their rate of change
exetcises a significant influence on the capital movements initiated by these
dlscrepanc1es We shall therefore also attempt to take this latter point into
account in the following extension of Mas-Colell’s cross-dual dynamics by
means of derivative forces.

Let us start by summarizing: the one-input one-output case of general
equilibrium analysis and its Walrasian price/ quantity adjustment procedure
(a more detailed, but still partial version of it can be found in Beckmann-
Ryder (1969) and Mas-Colell (1986, pp. 64-67). We assume as given an
economy where commodities are produced solely by means of labor subject
to a smooth production function f(/%) = 9 which may exhibit decreasing,
constant, or increasing returns to scale. Furthermore, we assume as given
a smooth demand function d(p =) for the one produced commodity, where
profits & are defined by = = p f(I%) — wl¢ (p the commodity price and w
the nominal wage rate, w = 1 by choice of numéraire). Households’ initial
endowments consist of labor solely and labor supply can be derived from
the above demand function by means of Walras’ Law

pd(p, m) =I(p, ©) + == (L@, n) — () + py’(p).

4 Towe this observation to a remark made by R. Goopwn on a related paper of W. SEMMLER
and myself communicated to me by W. SEMMLER as a proposal for future research.
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Due to this law we shall neglect the labor market in the following and
will investigate the question of stability of general equilibrium by means
of the market for goods. For simplicity, we shall also restrict our
considerations to the set of regular economies, i.e., in particular assume
that all equilibria of our economy exhibit a regular Jacobian [and are thus
finite in number, if the usual boundary conditions on the sign of excess
demands are added, cf. Dierker (1974, Ch. 1 and 10) and Kirman (1989)
for details].

The above demand function d can obviously be rewritten as a function
of the two variables p and /¢ and will be denoted by d(p, /4) for simplicity.
According to Mas-Colell (1986, p. 65) we have for the partial derivative
of this function d,<0 if and only if the weak axiom of revealed
preferences holds true, a situation which we will normally not assume as
given in the following. We denote by /4= [(y*) the inverse of the
production function (i.e., planned employment as a function of planned
output) and will abbreviate from now on /4 and y° by / and y for
simplicity. The function /= /(y) thus represents the (minimum) cost function
in the present model. ' :

Consider now a given (interiot) equilibrium of the above simple model,
i.e., a situation of the following type \

d(p*, lp*) =9*> 0 (1)
I (p*)=p*>0 (2)

where 0 < /” (y) must hold true in a neighborhood of y* (locally decreasing
or constant returns to scale must prevail at a given equilibrium!). Out of
equilibrium y*, p* the following type of tdtonnement process has been
suggested by Mas-Colell (1986) as a formalization of Walras’ views on the
market dynamics in a production economy:

p=a-[d@, 1) —y], a=const>0 (3)
y=B-lp—1")], B=const>0 (4)

Verbally stated the dynamics (3), (4) says that prices are adjusted according
to the excess demand on the market for goods and that supply is adjusted
in view of extra profits or losses, i.e., according to the discrepancy between
the current price for goods and the marginal wage costs of producing the
current supply. Such a process has since long been related with the writings
of Walras by a few authors, most notably by M. Morishima (1959, 1977)
and R. Goodwin (1953, 1989).
For the Jacobian | of (3), (4) we get at the equilibrium point p*, y*

_{x O\ [d, - 1)
]“(0 ,8) (1 e 5)
since d, =d,n" ()]’ (y) =0 at [*(y*). Note again, that we will only
consider regular equilibria (det | # 0) in the following. In the case of the

7

70



weak axiom we therefore have trace [ < 0 (since /” (y*) = 0) and det [ > 0
and thus get Jocal asymptotic stability if either d, < 0 or [” (y) > 0 holds
true in addition, i.e., in case of a negatively sloped cf (-, y)-curve or for strictly
increasing marginal costs.

The following Figure 1 provides a simple illustration of the complicated
dynamic behavior that can be expected even for the above simple one-input
one-output economy — due to the vastly arbitrary nature of excess demand
functions in models of general equilibrium. This picture seems to suggest
that not much can be gained in such a general equilibrium setup from using
a cross-dual dynamics & la Walras instead of the standard one-sided pure
price dynamics generally used for such systems.

However, important similarities in the formulation of Walras’ cross-
dual dynamics and the dynamic processes as they were formulated by the
Classics and Marx [Their ‘tendency of profit-rates to equalize’, cf.
Flaschel/Semmler (1987) for details] suggest, on the one hand, that this
dynamics has a much wider economic background and plausibility than its
modern one-sided counterpart, the so-called law of demand. And, on the
other hand, the long tradition that this latter process has in economic
theorizing opens up the possibility that further plausible modifications of
it can be found — by a careful reflection of the features that such a classical
dynamics may exhibit — which will improve its stability properties. A

... Stable node (or focus),

/- p=1I(y) - isocline

l O Equilibria

ﬁ Stable node (or focus)

- Saddlepoint

\ y=4d (p, ) - isocline

\ y)d

Fig. 1: Cross-dual dynamics in the one-input one-output case.
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suggestion of this kind is the simple idea that rising profit-rate differentials
will exercise a stronger influence on the conditions of supply than falling
ones, cf. again Flaschel/ Semmler (1987) in this regard. This idea has been
applied in Flaschel (1991) in an extended form to the Walrasian dynamics
here under consideration and will be the starting point of our following
study of the global properties of such a dynamics. Our following extension
thus integrates the effects caused by the direction and the rate of change
of excess-profitability with those that are generated by excess-demands.
It thereby leads to the following revision of the dynamics (3), (4):

p=a-ldp, (H) =)+ 1 dp, 1)~y (6)
y=B-l0—-TON+r-@—10)] [7)

In this new dynamics, prices and quantities do not only react with respect
to the level of excess demand and the excess of prices over costs, but also
with regard to their time rates of change, i.e., rising discrepancies or
disequilibria excercise a different influence than falling ones on the rates
of change of prices and quantities. Note here, that the points of rest of
this new dynamics are the same as in the original dynamics (3), (4).

This fairly natural extension of the dynamics (3), (4) now in particular
makes it possible to formulate the following two proposition — if we in
addition assume that ¥, = 7, holds true throughout [see Flaschel (1991)
for details]:

Proposition 1 Consider an interior equilibrium of the system (6), (7). There
exists v, = 0 such that (p *, y'%) will be locally asymptotically stable for all
y = 7y, with regard to the gzven adjustment process if Y= v, = v, is assumed

throughout.

The above proposition states that market pressures — in combination
with price/cost differentials — can be reformulated in such a way that the
stability of all economic equilibria of a given regular economy will come
about. Yet, this proposition also shows that the information which ‘markets’
need in order to allow for such generally stable adjustment processes toward
equilibrium considerably exceeds the information that they have to provide
— on a theoretical level — for the derivation of the existence of such
equilibria.

Making use of the reformulation (9) of the process (6), (7) one can
furthermore show:

Proposition 2 The adjustment process (6), (7) will give rise to a locally stable
generalized Newton method’ if its parameter y is chosen as a function of
the Jacobian of this dynamics in an appropriate way.

5 See FrascHer (1991) for details.
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Roughly speaking this says that the new dynamics will lead us locally
toward the equilibria for all economies in the ‘neighborhood’ of a given
one — if the parameter v of the derivative feedback mechanism is fixed
appropriately — and that this mechanism provides an economic example
for the formal discussion of generalized Newton Methods and their
properties [see again Flaschel (1991) for details].

The aim of the present paper, however, is to treat global questions. To
this end, let us first note that cross-duality — in its most basic form [here
d,=1" = 0] — typically gives rise to purely cyclical movements [cf. also
Flaschel/Semmler (1987) in this regard], since its Jacobian in such cases
is of purely skew-symmetric type. Its (linearized) dynamics consequently
is of the same neutral type of stability which characterizes the well-known
growth cycle model of R.Goodwin (1967). Taken by itself it thus neither
gives reason to expect global stability nor total instability for the dynamics
it implies. Instead, it, in fact depends on the particular type of the additional
forces which decide whether such a cycle model will become globally stable
or even globally asymptotically stable in the end.

Such a statement can be illustrated with regard to the dynamics (3),
(4) by means of figure 1 in a straightforward way:

® The sign of d, at the equilibrium point p *,y *  first of all decides
whether this pomt is locally stable (d < 0) or not [assuming /” <0
for simplicity].

¢ In the case d, > 0 local asymptotic stability depends on the relative
size of the adustment parameters o,f.

® In the case d, <0 local asymptotic stability may even be of purely
monotonic kind (non-cyclical)if the terms in the diagonal of (5) are
chosen sufficiently large.

e Whatever the particular type of local dynamics that prevails at the
various equilibria of figure 1, it can easily be seen (graphically®) that
a system like that of figure 1 must be globally stable (or limited) —
if the dynamics on the boundary of ® 2 is redefined in a natural way

Considering the above figure 2 we can see that it is mainly due to the
outward bounds assumed with respect to the demand function that the
considered cross-dual dynamics must be stable in the large. Therefore, the
forces which delimit the system’s behavior have nothing to do with the
cross-field type of adjustment assumed to characterize the price/quantity
movements around equilibria. In addition, figure 3 in Mas-Colell (1986,
p. 65) — with its unique equilibrium, cf. our figure 5 below — and the
comments which accompany it very nicely indicate how the details of the
situation given by our figure 2 can be further analyzed, firstly by a mixture

¢ A formal proof would have to reformulate the Poincaré-Bendixon Theorem appropriately
to take account of some particular features of figure 2.
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Fig. 3: A simulation study of figures 1, 2.




of local and global considerations (deriving global limit cycles by means
of the Poincaré-Bendixon Theorem), and secondly by purely local
considerations (where one may derive in addition to the existence of the
globally stable limit cycle of the first kind, e.g., unstable limit cycles near
the equilibrium by means of the Hopf bifurcation theorem). We do not
want, however, to go into the many details of such an analysis here. Instead,
we close this section by a simulation study based on the dynamic situation
depicted in figure 17 This simulation roughly indicates the regions where
the two point attractors of figures 1,2 have their basin of attraction and
it also shows — on its left hand side — which of the trajectories may hit
the boundary of the positive orthant (where the dynamics is governed by
one law only).8

3. DERIVATIVE CONTROL AND GLOBAL STABILITY

One great disadvantage in the arguments put forth so far to support
the global stability of our cross-dual-dynamics (3), (4) is that they rely on
side conditions where a controlled economic behavior is not really to be
expected, i.e., on boundary conditions such as y = 0 or p = 0. These choices
are simply too extreme to be convincing that the true forces that keep the
system within economically sensible bounds have thereby been detected.
It is in this regard that derivative forces like those in (6) and (7), which
depend on the direction and the amount of change of disequilibrium
situations, may become important as we shall attempt to show in the

following.
In compact form the system (6), {7) can be reformulated as follows:
; i
z=Fz)~+ <y>F{) (8)

where z stands for (p,y)’ and where <y > is the diagonal matrix containing
the adjustment parameters y,,v, in its diagonal. These parameters are
both assumed to the positive but not necessarily equal to each other in
the following.? The above reformulation of system (6), (7) in turn implies

i=F@) +<y>F ()3 ie.
t=(I-<y>F'(2)) 7 'F(2) (9)

as long as the matrix [ — < y> F’ (z) is regular.
We have shown in Flaschel (1991) that a choice of a sufficiently large
common parameter v, =y, will make all points of rest of such a system

7 With 8= 1 for simplicity.

¢ The lower left-hand corner of the rectangle which surrounds the depicted trajectories has
as coordinates the values (-.7,-.7) [and (11,9.6) on the upper right hand side].

® Note that we could only derive special, 7. e., two-dimensional results in Flaschel (x991)
for the cases where either 7; or 73 = 0 was assumed to hold true.
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locally asymptotically stable. We consequently know [by index
considerations, cf. Dierker (1974), for example] that our system (9) cannot
be well defined over the whole range that is considered in figure 2. A general
investigation of the global properties of (9) may therefore be quite
complicated and demanding.

Hence, to simplify our considerations, let us consider a regular
equilibrium z* and an open and connected domain D containing z* as a
unique equilibrium where the dynamics (9) is well defined and where the
function

GR=z2—2"—<y>F()is C?
and has a regular Jacobian at all points of the domain D.

In order to study the dynamics (9) on an appropriately chosen part of such.
a domain the following auxiliary function V will be of help

V@ =GR =1z —2* — <y>F@)|? (10)

where ||-|| denotes the Euclidean distance (derived from the scalar product
<.,.>). '

Proposition 3 The function V is a strict Liapunov function at z*1° if the
adjustment parameters in < y> are chosen sufficiently large.

Sketch of pioof: By the definition of V we have V(z*) = 0 and because of
the regularity of the function G(2) = z — 2% — < y> F(z) at 2* we also know
that V(2) > 0 must hold true in U — z* for a suitably chosen neighborhood
U of the equilibrium z*. According to Liapunov’s stability theorem?! it
remains to be shown that the condition V<0 also holds in such a
neighborhood U — z* of the given equilibrium. Differentiating V along the
trajectories of (9) gives [Cf Dieudonné (1960, p. 144)]:
V=2<(-<y>F@) 4, z—2"— <y>F) »
=2<FQR),z2-2*— <y>F@) >
=2[<Fl@), z—2*» — < F(2),<y>F() »]

Now, since z* is a regular equﬂibrium of F, we can apply the mean value
theorem [cf. Dieudonné (1960, p. 155)] with regard to the function F~!
in order to get that

IF=" @) = F~'0)ll=<c-llg—0ll or
lz—z*ll<c-[|F@z)ll
must hold true for a suitably chosen neighborhood U’ of z* and a positive
constant c.

10 Cf. HirscH/SMALE (1974, p. 193) for the definition of this concept.
11 Ct. again HirscH/SMALE (1974, p. 193).
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This gives
V<2[IF@I - Iz = 2%l = ymin - HF @21,
< 2[IF@I? - ¢ = i - IF@II7L,
= 2(¢c = Y IFQI?

where Y, > 0(!) is the minimal parameter in the set of all adjustment
parameters v;. The choice Yy, > ¢ then immediately implies that V<0
must hold true in U’ — z*.

Proposition 4 The dynamics (9) is globally asymptotically stable on the
largest set V= 1([0, al),a > 0 where the function G is of the assumed type!?
and where V(z) < 0 holds true for z # z*.

Proof: See Theorem 2 in Hirsch/Smale (1974, p. 196).
Assumptions:

Assume that there exist a positive real number such that the closed set
K = V-1([0,4]) is compact and contained in the domain D. Let us denote
the maximum of |z, — 2| for z € K'by &;, i = 1, 2.

We already know that there exist numbers e,e, — positive and
sufficiently small — such that the mapping F maps an open neighborhood
Ue of the equilibrium z* one-to-one onto the open set that is determined
by |F(),| < €,i=1,2. Since z* is the only equilibrium of (9) in the
compact set K we can choose these ¢ in such a way that

|F(z);]=¢ forall z€ K=U¢, i=1,2 (11)

will hold true in addition.
On the basis of these assumptions we can show:

Proposition 5 The function V is a non-local Liapunov function around
the equilibrium z*, i.e., V<0 will hold true in the set K— U* if the
adjustment parameters ; are larger than kife, i =1,2.

Sketch of proof: Explicitly referring to coordinates we get for 1%
VZ—" 2[2 P(Z)z (Zz‘ - Z?') - E Y: (F(Z)Z)z]

= 2L |F(@); 1z — 23 — 24 7,(F@))7)
=< 212 (|F@ll k| = 1] F ), <0

if v, > k;/¢; holds true.

12 Cf. our above description.
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Fig. 4: Basins of attraction of the dynamics (9).

The following figure illustrates the situation we have just considered.
Of course, the above estimation is very crude, so that V < 0 may generally
be expected to hold true for much smaller ; than have been used to prove
the above proposition. Verbally stated this proposition says® that all
trajectories of the dynamics (9) which start in K will reach U¢ after some
finite time [from where on their further behavior is no longer obvious since
z* need not be an asymptotically stable equilibrium of (9)]. The “limit set”
of the “invariant set” K, therefore, must be contained in U¢, but may
have quite a complicated structure.

We conclude that the dynamics (9) still allows a variety of possibilities
to tailor it to the particular equilibrium under consideration. In particular,
one may also assume that the parameters vy, will depend on the
discrepancies in supply and demand as well as on prices and marginal costs
— or alternatively on the distance that actual prices and quantities z = (p,
)’ will have from their equilibrium values z* — for example, in the
following way

e ;=0 in a neighborhood of z*, i.e., derivative forces only come into
being if price-cost or supply-demand differences become sufficiently
pronounced,

1 We know, however, of no reference where such a non-local type of Liapunov function
is considered and where an exact proof for the mathematical part of this proposition is given.
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e yi=cbn5f large enough to ensure V<0 on the boundary of
K=V~7Y0, 4], i.e., on V™ (a).
e y(z) continuous.

Such a situation would then imply that K is positively invariant, i.e.
the dynamics (9) must then be globally stable with respect to this domain
but it does not imply anything further as to the type of bebavior that this
derivatively controlled system will have in the interior of K!

Such a result definitely leaves the realm of neoclassical stability analysis
(according to which the ‘world’ consists of point attractors only). Instead,
it approaches Marxian ideas on the capability of capitalist economies to
‘reproduce’ themselves, i.e., to remove certain ‘obstacles” which threaten
‘their continuing existence if these ‘obstacles’ (here: discrepancies in
profitability and in quantities supplied and demanded) reach certain .
thresholds. Of course, the present model is still very far away from such
a speculative picture of the working of a capitalist economy, e. g., because
‘profitability’ is not yet treated in an adequate way — and in particular
also because of our reliance on titonnement adjustment procedures.

In his brief comments on global stability Mas-Colell (1986, pp. 63ff.)
states that one may perhaps “attach some meaning to a globally convergent
dynamics but a limit cycle, say, lacks any real significance.” Our opinion
with regard to this question is that titonnement dynamics has no real
significance at all if the word ‘real’ is taken literally. Instead, it is a
methodological device that may be useful for comparing alternative ideas
or proposals on the types of adjustments conceived to take place in a
capitalist economy — in some sort of a vacuum, where many complicated
feedbacks of a con51stently formulated economic environment are set aside
and where one can test in a first round the effectiveness of such proposals
with regard to their basic dynamic’ properties. To lay bare the essentials
of an economic adjustment mechanism in an artificial environment may
thus represent one useful approach on the way in constructing proper types
of adjustment processes for various types of capitalist market economies
— as the global stability results we have reached above, for example, should
demonstrate.

4. SIMULATION STUDIES

In order to allow for some basic simulation studies of the effects of
derivative control by means of an explicit treatment of the implied dynamic
system (9) we shall further simplify the situation we have used for illustrative
purposes in section 2. We shall now consider the example that is depicted
in Mas-Colell (1986, p. 65), here by making use of the following explicit
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P 10cos (1.5p) - 5p + 37
5.9 ) 15 %1 = 3.7+.1 %
I
3‘14 .....................................
\\
N —> d) y
21.3 47

Fig. 5: Global stability for unique and instable equilibria.

form of his demand function d(p) — which qualitatively is of the same
shape as the one used by Mas-Colell in his figure 3:14

d(p) = 10 cos(1.5p) — 5p + 37 (12)
We furthermore assime a marginal cost curve of the type
I”(y) =c, + ¢,y for simplicity. This choice gives rise to the following
type of phase portrait:
In this case we get for the cross-dual dynamics (3), (4), 7.e., for
< y> =0, the equations
F(z) = <o¢[10 cos(1.5p) —5p + 37 — y])
Blp — ¢, — ¢9]
and therefore for the matrix that is involved in the formulation of the
dynamics (9):

_I-<7'>F’(z)=<

(13)

I+ an[15sin(1.5p) + 5]  ayy ) (14)

~ 1.8 1+ fc,

14 See also assumption (ii) on page 64.
> We shall make use of ¢, = .025,¢; = 2.61, e, p* =7, y* = 21.3 and a = 1, B= 1 in our
following computer simulations.
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This finally gives for the dynamics (9) the following system of ordinary
differential equations of dimension 2:
1

t= 090 = (1+ar1_[155m(1.5p)+5]>(1+ﬁd)+7172°‘ﬁ'

< (1 + Bd)al10 cos(1.5p) = 5p + 37 — yl — anflp — ¢, — c.y] >
v,Bal10cos(1.5p) — 5p + 37 — y 1+ (1 + oy, [15sin(1.5p) + 5D BIp — ¢, — ¢,9]

This is the dynamic system that we shall briefly study by means of
computer simulations in the remainder of this section.

6,0000 T T T T T T T T T

5,4000 [
4,8000 [
4,2000 [
3,0000 [

3,0000 1

2,4000 [

2,4000 f

1,8000 1

0,6000 [

i 1 | | ! | | 17

0,0000
0,0000 50,0000

Fig. 6: No derivative control: the fold catastrophe.
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1,8000

0,6000

0,0000 i ! { | | i i | ]
0,0000 9 50,0000

Fig. 7: Complete derivative control: global asymptotic stability.

Let us first consider the case of no derivative control (11, =10). The
above example then gives rise to a very fast price dynamics. Up to pretty
short traverses we consequently always have that the movement is very
near to the p = 0 isocline where the goods market is in equilibrium. Yet,
due to price/cost differentials, output keeps expanding (on the upper part
of this isocline) and contracting (on its lower part) until it reaches the critical
point where the demand curve bends backwards (becomes positively sloped).
The possibility for an upper, respectively lower, goods-market equilibrium
then disappears and there follows the well-known rapid downturn,
respectively upturn, here in terms of goods-market prices, of such a dynamics
which again restores approximate goods-market equilibrium on the
lower/upper part of the demand cutve.
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Fig. 8: Partial derivative control: Cyclical viability.

The following simulation of this behavior has been conducted by making
use of a step length of 0.01. Increasing this step length to, e.g., 0.1 leads
— in addition to the results shown in figure 6 — to overshooting and
damped cycles around the p = 0 isocline when the system moves from its
upper part to its lower (and v.v.).

The initial situation is therefore characterized by a very stable type of
limit cycle where one of the isoclines governs nearly all of its shape. Can
this pronounced cyclical dynamics be overcome through the introduction
of derivative control — by making its influence sufficiently strong? The
following simulation drastically demonstrates that this can indeed be the
case [the parameters 7,, have both been set equal to 20 to obtain this
figure]. Derivative control thus not only leads to a damped cyclical
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movement, but is also capable of removing the cyclical nature of cross dual
dynamics in a very radical fashion.

Finally, in figure 8 — following a recommendation of R. Goodwin —
the same strong influence of a derivative control y,, = 20 is combined
with the ordinary cross-dual dynamics — in a bang-bang fashion, 7. e., the
dynamics (3), (4) applies as long as excess demand is less than 2 in absolute
value and excess price is less than 0.6 in absolute value.

In such a case the cycle is, of course, no longer removed, but only
becomes squeezed when the dynamics reaches the domain where the
derivative forces become operative. This demonstrates that the inclusion
of derivative control mechanisms — which are highly plausible whenever
existing imbalances cross certain thresholds — by no means must give rise
to the ‘world of point attractors’ of ordinary neoclassical economics.

Note finally, that we have made use here of the possible combinations
of cross dual and derivative control mechanisms only in a fairly prelliminary
way. Many further results may be expected for other types of combinations,
different parameter sizes,, and in particular for different types of economic
environments. Also, the possibility of only a partial derivative control (where
some of the adjustment parameters are set equal to zero, for example by
excluding the law of demand, but not the law of profitability from the
derivative control mechanism) should be investigated in much more detail
than was done in Semmler/Flaschel (1987) and Flaschel (1991). This,
however, will demand different strategies of proof if global stability results
are to be obtained — as is obvious from the proofs given in section 3. Such
questions must however be left for future investigations.

w
Fakuitat fir Wirtschaftswissenschaften,
Universitdt Bielefeld. ,
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