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Abstract

Most studies of the frequency of reswitching and reverse capital deepening were
based on two or three sector models and came to the conclusion that these phenom-
ena are rare. Here it is shown that the probability of isolated reswitching tends to
zero in large economic systems. The assumptions of the new mathematical theorems
proposed are supported by an empirical enquiry. The randomness of input-output
systems helps to explain the result. If the number of switch-points tends to infinity
in large systems, it is not certain that even one represents a case of reverse capital
deepening. The focus of the critique of capital will have to change.
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1 Introduction

Reswitching and reverse capital deepening were the subject of what was perhaps the
most heated debate in economics in The Quarterly Journal in the 1960s (Samuelson,
1966). While reswitching and reverse capital deepening are incompatible with a pure
form of neoclassical theory, modern mainstream neoclassicals regard these phenomena as
exceptional paradoxes and ignore them in consequence. These paradoxes will be explained
formally in Section 3. Readers not familiar with the definitions should pick them up there.
Here we start with an overview. It is the purpose of this paper to confirm the exceptional
character of the paradoxes for large systems. We want to show that the probability of
their occurrence tends to zero as the number of the sectors of the system tends to infinity.
I do not think that this saves neoclassical theory from critique; I rather believe that a
modified critique will result, but this is not the subject of this paper. After the general
introduction in Section 1, Section 2 provides the background of the theory of prices and
focuses especially on the degree to which relative prices change with distribution. Section
3 analyses where techniques leading to reswitching are located in the set of potential
techniques. Section 4 illustrates the geometrical problems graphically, Section 5 provides
an empirical investigation on the basis of input-output analysis and Section 6 contains
the theorems supporting the general contention. Some conclusions follow in Section 7,
where we ask how probable it is that at least one case of reverse capital deepening can be
found in a large system.

Reswitching appears as a possibility in an Austrian model already in an exchange
between Böhm-Bawerk and Irving Fisher (Fisher, 1907, p. 352; Schefold, 2017, pp. 224,
270, 212). Sraffa’s (1960) example of reswitching is formally close to the one proposed
by Fisher, but aims at a more fundamental critique; it uses non-basics in a basic system.
Levhari (1965) thought that reswitching could be excluded in basic systems, but he was
mistaken as several authors showed by means of counterexamples; Samuelson (1966) sum-
marised the debate, adding an Austrian example that in turn reproduced the structure of
the example proposed by Sraffa. In consequence, a number of authors have since taken up
the challenge to determine whether reswitching is exceptional or sufficiently frequent to
question the realism and the applicability of neoclassical theory. If reswitching or, rather,
reverse capital deepening were as frequent as the (for neoclassicals) normal case, lower-
ing the wage in the face of unemployment would lead to an uncertain result, for, always
according to neoclassical logic, the existing stock of capital would be transformed and,
with lower wages, the installation of more labour-intensive techniques would be expected,
but just as many labour-saving techniques would appear, with compensating effects, so
the employment effect would be uncertain and other parts of the theory would also be
hampered. Hence it matters whether reswitching is frequent or rare.

Most authors have examined the question using two- or three-sector models. Austrian
variants have been used by Samuelson (1966), as stated, by Hicks (1973), and Laing
(1991), and the Austrian model is also discussed in Mainwaring and Steedman (2000).
They all conclude that the probability of reswitching or reverse capital deepening is small.

A somewhat different picture is obtained with the Samuelson model of Samuelson
(1962), also called corn-tractor model. Here always the same consumption good is pro-
duced by a capital good and labour, and, with labour, this capital good reproduces itself
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in a second process. Technical change can then be illustrated by the familiar example: one
replaces the spade by the horse-drawn plough and then this again by the tractor-drawn
plough. The transitions are not modelled. Mainwaring and Steedman (2000), D’Ippolito
(1987) and Eltis (1973) with a somewhat similar approach estimate the probability for
reswitching to be low, while Petri (2011) is alone in believing that it is much higher. It
is always a question of identifying a region in the space of the parameter values where
reswitching occurs versus a region, where at least one switch results; the probability then
is given as the ratio between the corresponding areas. Or, similarly, it is asked whether
a given switch occurs with parameters such that the intensity of capital increases with
an increasing rate of profit at that switch. The in principle same approach is used when
Sraffa models are considered. Woods (1988) analyses a two-sector Sraffa model, and again
Mainwaring and Steedman (2000), still concluding that reswitching is not frequent.

The restriction to small models in all the cases considered so far is problematic, if
one has an economic theory in view that should be capable of applications. Reverse
capital deepening occurs in a specific sector, but it has a macroeconomic implication. The
phenomenon may disappear because of aggregation – most obviously, if one aggregates
to a one sector-sector model, in which reverse capital deepening is not possible. It is
not clear what reverse capital deepening means in a two-sector model or, more generally,
one in which aggregation is so high that individual method changes cannot be identified.
Technical change would then result in a gradual, near continuous change of coefficients.
The logic of the argument seems to require a representation at an intermediate level of
aggregation, such as is represented in input-output tables with significantly more than
two sectors. One usually assumes homogeneous commodities in pure theory. Sraffa (1960)
speaks of “wheat”, “iron”, “pigs”, “gold”, but none of these commodities is perfectly
homogeneous; standards of fineness are needed even for gold, the price of electricity varies
according to time and location, etc. Input-output tables have the advantage that they
are the result of international cooperation in the definition of sectors; they are the best
makeshift we have for analysing inter-industry structures.

So we must turn to large economic systems with many industries. Schefold (1976)
proved that the probability for reswitching is positive for basic, regular Sraffa systems.
Sraffa systems are regular as defined in Schefold (1971) as, roughly speaking, systems
where prices move in all directions, if the rate of profit varies – a system is not regular,
for instance, if the labour theory of value holds. I believed at that time that reswitching
would actually be frequent, but an attempt to show it empirically with a PhD student of
mine, Zonghie Han, using pairs of input-output tables, led to the opposite result (Han and
Schefold, 2006). Zambelli (2018), using a new algorithm, has calculated the envelopes of
the wage curves derived from the techniques of 30 countries with 31 sectors. His criteria
for judging whether the envelopes are compatible with neoclassical premises are in part
different from the ones used here, but Kalb (2022) has shown that Zambelli’s results show
a frequency of reverse capital deepening that is quite similar to that observed by Han
and Schefold (2006): less than 2% of the switch-points observed on the envelope exhibit
reverse capital deepening. I was not aware until recently of D’Ippolito’s attempt of 1989 to
show that reverse capital deepening is rare (D’Ippolito, 1989). This will not be discussed
in the present paper, because only a short summary of his long unpublished paper with
Mario Latorre has been published. According to this description, D’Ippolito and Latorre
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used a Monte Carlo method, therefore an approach which is quite different from the one
pursued here. I hope to be able to consider it in the near future in a special paper.

I had begun to use random matrices as a possible explanation of the near-linearity
of wage curves which we shall have to discuss as a preliminary to the discussion of the
probability of reswitching in the next section (Section 2). Combining the insights about
random matrices with the empirical lesson, I explored the possibility of getting an approx-
imation to Samuelson’s (1962) surrogate production function (Schefold, 2013a). At the
same time, I tried to understand another curious finding of the paper with Han of 2006:
Far fewer wage curves from a given spectrum of techniques would appear on the envelope
than we had expected; an estimate in Schefold (2013b) then was that, if there were s
techniques in the spectrum, one should expect at most ln s wage curves on the envelope.
A deeper investigation with the mathematician Götz Kersting led to an estimate of 2

3
ln s,

if the maximum wage rates and the maximum rates of profit are distributed according
to a uniform distribution with given bounds. In the relevant range of the rate of profit
(bounded away from zero and from very high rates of profit) only one or two wage curves
appear on the envelope, of almost equal capital-intensity, and this result carries over with
slight qualifications to the normal distribution according to theoretical considerations,
according to empirical investigations and according to numerical experiments (Kersting
and Schefold, 2021). This implies that there is virtually zero substitution between cap-
ital and labour among efficient techniques. Another way of stating it is to say that the
capital-labour ratio is given independently from distribution. Hence there is no room for
the marginal productivity theory of distribution and one feels invited to return to the
post-Keynesian theory of distribution (Schefold, 2021a).

Zero substitution thus becomes an argument for a new critique of neoclassical theory,
if reswitching is truly exceptional. It is a little surprise that the absence or near-absence
of reswitching is also essential for the new critique, in that the formula for the upper
bound of the number of wage curves on the envelope, ln s, had been derived first on the
assumption that the wage curves are linear. But it turned out that this estimate can be
extended to wage curves that are not linear, provided that reswitching is sufficiently rare
(Kersting and Schefold, 2021, p. 523).

Our task now is to show that reverse capital deepening and reswitching are rare. More
specifically, we want to show that the probability of their occurrence tends to zero, if n,
the number of sectors, tends to infinity. For each finite n, this probability is (under the
assumptions to be stated) positive, but increasingly small.

A short overview of how we shall proceed: if a regular Sraffa system is given, we can
describe the set M(r1) of potential methods of production that have one switch with the
method of production in use, say the first, denoted by (a1, l1), where a1 is the vector of
commodity inputs for the production of a unit of commodity 1 and l1 the labour input.
The set M(r1)∩M(r2)∩M(r3) then is, for instance, the set of potential techniques (a0, l0)
that have three switch-points in common with (a1, l1), which means the set of potential
methods that produce commodity 1 at the same cost as (a1, l1). This set will not be
empty, because it contains (a1, l1), but insignificant, because it is of lower dimension than
M(r1). However, M?(r1), the union of all M(r), where 0 < r < R and r 6= r1, will be
of the same dimension as M(r1), if the system is regular. M?(r1) is a subset of M(r1),
and the measure of M?(r1), divided by the measure of M(r1), will be the probability of
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reswitching.
What we have examined here is what I call an isolated reswitch: we have an isolated

system, with n industries and one method per industry, except in one – here the first –
industry, where there is one alternative method, which gives rise to a switch and a reswitch.
We have a systemic reswitch, if there are several alternative methods in possibly several
industries, and a switch and a reswitch occur both on the envelope.

If the probability of isolated reswitching tends to zero, so will, it appears, the probabil-
ity of systemic reswitching and of reverse capital deepening, for an isolated reswitch always
underlies systemic reswitching and, by the way, also quite obviously multiple switching
with more than two switch-points of two wage curves. It further underlies reverse capital
deepening, for this means that the wage curves corresponding to two methods for pro-
ducing commodity 1, all methods in the other industries being equal, intersect twice, and
the second switch (at the higher rate of profit) is on the envelope, while the first switch
is dominated by at least one other wage curve. If the probability of isolated reswitching
tends to zero in large systems, reverse capital deepening at a given switch will do the
same, for if it did not, one could in each case consider the underlying isolated reswitches
by assuming away the technique with the wage curve dominating the first switch and
would thus obtain more cases of isolated reswitching, so that the probability of isolated
reswitching would not approach zero.

In other words: The probability for a systemic reswitch is much lower than that for an
isolated reswitch. Every systemic reswitch is also an isolated reswitch, but not conversely,
because at least one of two switch-points on the envelope of an isolated reswitch is likely
to get dominated by some other wage curve, as soon as we have a multiplicity instead of
only two techniques and wage curves. We shall see in the last section that the probability
of reverse capital deepening is in between the probabilities for isolated and systemic
reswitching. More complicated results obtain, if one looks not at one given switch, but at
all switch-points of a system with many techniques taken together. Will always at least
one case of reverse capital deepening appear among the possibly many switch-points of a
large system? This question will be addressed at the end of the paper. For wider issues,
in particular for an account of how my views have changed in consequence of successive
new analytical findings, I must refer to other papers.1

1A referee, to whom I owe thanks, suggested that I amend this paper with an overview of how the
analytical discoveries were made and of how I interpreted them, but that might lead far away from the
present argument and confuse the issue. Moreover, such an overview regarding the prehistory of this paper
has been written already and is in print (Schefold 2022a), while broader conclusions from the paper with
Kersting and from the thesis here presented are proposed in Schefold (2021a). The referee also suggested
that I say more about the difference between pure and applied theory and in particular about the problem
of using Leontief matrices as empirical counterparts for Sraffa systems, but this has been discussed in
my controversy with Fabio Petri, see Schefold (2022b) and Schefold (2022c). The referee thought that
the title of this paper promised such explanations, but there is a misunderstanding here. “Explained” in
the title does not refer to an intention to make the paper especially understandable to non-mathematical
readers or to readers not acquainted with the previous discussions on capital theory. This paper is, and
must be, a piece in mathematical economics. It provides the proofs of a number of theorems, which
demonstrate the rarity of reswitching, each under special assumptions. “Explained” then expresses the
claim that these theorems, taken together, explain the phenomenon of the rarity of reswitching. I say
“explained” and not “proved” because it is a matter of judgement whether the assumptions cover a
sufficiently broad number of cases. I try to argue that the assumptions are indeed sufficiently broad, they
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2 The Behaviour of Prices and the Wage Rate

We shall have to use properties of Sraffa systems which ensure the quasi-linearity of prices
and of wage rates as functions of the rate of profit. Much research has been dedicated to
the task of specifying properties of Sraffa systems, which lead to only moderate movements
of prices and relative prices in response to changes of distribution. These considerations
can be traced back to Ricardo and his followers, ever since Ricardo realised in the prepa-
ration of his Principles that a rise of the wage rate and, with given methods of production,
a consequent fall of the rate of profit would lead to a rise of the prices of labour-intensive
industries relative to that of capital-intensive industries so that, if a suitable average price
remained constant, prices of the capital-intensive industries would fall against ordinary
intuition.

Recent decades have seen a rise in the number of papers devoted to empirically esti-
mating the response of prices to changes of the rate of profit. Some of the main findings
are to be summarised here. In a seminal paper, Bienenfeld (1988) estimates Sraffian stan-
dard prices from 71-sectoral US input-output tables of eight different years and compares
these prices, termed ’exact’, to theoretically derived linear and quadratic approximations.
When computing the mean absolute deviations (MADs) of the approximated prices from
the exact ones at different points over the range of the profit rate of each price curve,
he finds the MADs of the linear approximation to vary between only 0.05% and 17.20%,
indicating remarkably low deviations of prices from linear prices. The quadratic ap-
proximation fits the actual prices even better, yielding MADs between 0.01% and 0.27%
(Bienenfeld, 1988, Table 1). The stunning accuracy of Bienenfeld’s approximation is con-
firmed by Iliadi et al. (2014) with more recent input-output data from Denmark, Finland,
France, Germany, and Sweden. Another one of their empirical results is the rarity of non-
monotonic movements of standard prices in response to changes of the profit rate; only
18.8% of the computed standard prices are non-monotonic functions of the rate of profit
(Iliadi et al., 2014, p. 47).

A further aspect that has attracted the interest of scholars in the field is the deviation
of empirical Sraffian production prices from labour values. Using Chinese input-output
data of the year 1997, Mariolis and Tsoulfidis (2009) estimate the difference between
Sraffian standard prices and labour values at the empirically observed rate of profit.
Averaging over all 38 sectors, they compute the mean absolute deviation of standard
prices from labour values to be 11.2% (Mariolis and Tsoulfidis, 2009, p. 12). Similar
results are obtained by Tsoulfidis (2008) for the Japanese economy of five years between
1970 and 1990. At the actual rate of profit, the MAD of prices of production from labour
values ranges between 8.9% and 11.7% for the five years (Tsoulfidis, 2008, p. 715). These
results are in line with computations for the Greek (Tsoulfidis and Maniatis, 2002) and
US (Ochoa, 1989; Shaikh, 1998, 2016) economies, often interpreted as empirical support
for the labour theory of value, see, e.g., Shaikh (1998).

Turning to wage curves, empirical results based on input-output data from different

certainly are better than the old boundedness assumption and it is here that the empirical results come
in, but readers can ignore the empirical section and judge the results on the basis of their theoretical
views alone, if they wish. I should highly welcome an analysis of whether the hypotheses are reasonable
and the arguments are sound – more reflection on their significance may follow afterwards.
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countries and years have consistently shown only mild deviations of wage curves from
linearity. Using German data of different years provided by Krelle (1977), Petrović (1991,
p. 105) estimates the absolute value of the correlation between wage and profit rates to
vary between 97.77% and 98.87%, indicating minor deviations from a linear relationship
between wages and the profit rate. He repeats this computation with Yugoslav input-
output data from 1976 and 1978 and pays special attention to the impact of different
numéraires on the shape of wage curves. A major result is that wage curves tend to
be even closer to straight lines when composite commodities are used as the numéraire
(Petrović, 1991, p. 105). This result is significant, given the fact that net output is often
used as the numéraire, and will, in realistic settings, be a composite commodity. Findings
of almost linear wage curves have also been obtained for, among others, the Brazilian (da
Silva, 1991), Italian (Marzi, 1994), Korean (Tsoulfidis and Rieu, 2006), and US (Ochoa,
1989; Shaikh, 2016) economies. Iliadi et al. (2014, fn. 1) provide a helpful overview of
further related empirical literature.

These results call for an explanation, using earlier work (Schefold, 2022a). Let A ≥ 0
be a non-negative basic input matrix that is diagonalisable and l > 0 the associated
labour-vector so that the system (A, l) is regular in the sense of Schefold (1971). If prices

(1 + r)Ap + wl = p

are expressed in terms of Sraffa’s standard commodity, the wage curve is linear and
w = 1− (r/R), where R > 0 is the maximum rate of profit and 1/(1 +R) is the dominant
eigenvalue of A. The eigenvalues are ordered according to modulus, µ1 = 1/(1 + R) ≥
|µ2| ≥ · · · ≥ |µn| > 0. Using the right-hand side eigenvectors x1, . . . ,xn and representing
the labour vector as a linear combination of these eigenvectors, l = α1x

1 + · · ·+αnx
n, we

can write standard prices as

p =
(

1− r

R

)
(I− (1 + r)A)−1 l =

R− r
R

n∑
i=1

αi
1− (1 + r)µi

xi. (1)

If one supposes that the |µi| are small, i = 2, . . . , n, the standard prices become, for each
component, approximately a linear function of the rate of profit:

p ∼=
(

1 +R

R

)
α1x

1 +
(

1− r

R

)
(α2x

2 + · · ·+ αnx
n) = a + rb, (2)

where a = l+ α1

R
x1, b = − 1

R
(l−α1x

1). Prices are constant, if b = 0, which means that the
labour vector is the Frobenius right-hand side eigenvector of the matrix – then, the labour
theory of value holds. If this is not the case and if none of the αix

i is negligibly small, there
are two ways to rationalise the procedure. On the one hand, the empirical investigations
have shown that standard prices do not deviate much from linearity. The dominant
eigenvalue is not small. Formula (1) therefore demonstrates that standard prices can be
near-linear, with all αix

i being of significant size, only if the non-dominant eigenvalues
are small. On the other hand, this condition is also sufficient, and the question arises,
under which circumstances this condition will be fulfilled. We know from the Goldberg-
Neumann theorem (Goldberg and Neumann, 2003) that the eigenvalues will be small, if
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A is a random matrix (Schefold, 2013a). The randomness of A therefore is sufficient for
the quasi-linearity of standard prices. In a sense, it is also necessary. For if standard
prices are strictly linear, the non-dominant eigenvalues must vanish completely and A is
of rank one. Every semi-positive matrix of rank one must be positive, as is easy to see,
and can therefore be written as A = cf , where c > 0 is a column vector and f > 0 a
row vector. Now it is important to understand that our matrix A with small eigenvalues
does not have to be close to matrix cf in the sense that each element aij of A would have
to be close to the corresponding element of cf , that is to cifj. It is not necessary that
|A−cf | < ε for some ε > 0. The conditions of the Goldberg-Neumann theorem (Goldberg
and Neumann, 2003) imply that the rows of A must have coefficients with a distribution
that is i.i.d. with mean ci, as is shown in the Appendix to Schefold (2013a). Because of
this distribution, matrix A is even simpler and is “close” to ce, where e = (1, . . . , 1), but
this must hold only on average. The individual rows ai of A can have elements that are
very different from ci, provided only that they are non-negative and their mean is equal to
ci. In particular, many elements of ai can be equal to zero, provided only that the mean
equals ci. The presumption that actual input-output systems have a random structure
becomes utterly implausible, if one does not understand that A must be “close” to ce
only on average. Further, it should be kept in mind that the conditions of the Goldberg-
Neumann theorem are sufficient conditions for the non-dominant eigenvalues to be small
for large systems; they are not necessary, as is clear from the fact that A = cf also has
the property that all non-dominant eigenvalues vanish, and this property presumably still
holds, if we perturb the coefficients of cf , but the extent to which that would be possible
is not known, if f 6= e.

To summarise: the near-linearity of standard prices results, if the non-dominant eigen-
values are small, and this condition is also, in essence, necessary (setting apart certain
special cases such as that of the labour theory of value). The randomness of the input
matrix is sufficient for this result, and I have argued that it is also, in essence – but not
strictly – necessary. The systems under consideration must be large.

It should be noted that the property of standard prices being near-linear and not
constant depends only on the eigenvalues, not on the labour vector. However, the direction
into which near-linear standard prices move depends a great deal on the labour vector, as
is obvious from formula (1) and the representation of l by the eigenvectors. For instance,
it is possible that some of the αi are close to or equal to zero. If α2 = · · · = αn = 0, we
have the case of the labour theory of value and prices are a constant function of the rate
of profit and this will then hold even if all non-dominant eigenvalues are not small. The
insight suggests a generalisation. We consider the k-th component pk of prices p in (1).

Proposition
Using the notation and the assumptions (in particular: A is diagonalisable), price pk is
linear (close to linearity), if and only if µiαi = 0 (µiαi is small); i = 2, . . . , n; where we
assume that the xi are so normalised that xik = 1.

The proof is obvious. The Proposition is important, because it demonstrates that prices
can be linear, even if the system is not random. If, as appears empirically to be the case,
the first non-dominant eigenvalues are not small, prices can be linear all the same, if the
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corresponding αi are small. The αi add up to lk. Hence the individual αi are likely to be
small, if n is large. So it becomes plausible that price curves are quasi-linear even if some
non-dominant eigenvalues are not small.

If standard prices are linear functions of the rate of profit, relative prices and prices in
other standards become hyperbolas, and the extent to which they deviate from linearity
for 0 ≤ r ≤ R requires a special investigation.

A curious role is played by prices in terms of the wage rate p̂ = p/w. If we divide (2)
by w = 1 − (r/R), the components of the price vector are algebraically hyperbolas, but
the trajectory described by the vector p̂ in space is, geometrically, a straight line in the
space of prices.

Let a numéraire vector be given that is, in general, not the standard commodity.
With the normalisation 1 = dp = dp̂w, we obtain for the wage rate in this standard
a somewhat complicated expression. It can be simplified, using the representation of
d by the left-hand eigenvectors of A, d = β1q1 + · · · + βnqn. We add the important
assumption that none of the αi and none of the βi is equal to zero. Then we can use
the strong normalisation (Schefold, 2013a) and assume that the scales of the eigenvectors
qi and xi are chosen in such a way that α1 = · · · = αn = β1 = · · · = βn = 1. Using
the fact that left-hand and right-hand eigenvectors belonging to different eigenvalues are
orthogonal, one obtains for the wage curve w

w =
1

dp̂
=

1∑n
i=1

dxi

1− (1 + r)µi

=
R− r

(1 +R)q1x1 + (R− r)(q2x2 + · · ·+ qnxn)

=
R− r

(1 +R)q1x1 + (R− r)mv
,

(3)

where we have introduced the vectors m and v for the deviation between the numéraire
and the left-hand side Frobenius eigenvector and the deviation between the labour vector
and the right-hand side Frobenius eigenvector, in formulas m = d− q1 = q2 + · · · + qn,
v = l−x1 = x2+· · ·+xn. These vectors are expressions for the deviation of the numéraire
from the standard vector (in the strong normalisation) that would yield a linear wage
curve, if it was taken as the numéraire, and the deviation of the labour-vector from that
eigenvector (in the strong normalisation) that would, if it were the labour vector, also
result in a linear wage curve. It is clear from (3) that the wage curve will be linear if and
only if mv = 0. Sufficient conditions for linearity would be m = 0 or v = 0, and these are,
in our notations, conditions for using a vector proportional to the standard commodity
as numéraire – and then the wage curve is linear – or assuming a uniform composition of
capital, which, as is well known, will be the case if and only if the labour vector happens
to be the right-hand side eigenvector of the matrix.

But these conditions are not necessary. We arrived at standard linear prices by as-
suming that the matrix was random. We now make a similar assumption that turn the
components of the numéraire vector and of the labour vector into random variables. More
precisely, the components of m and the components of v shall be random variables, writ-
ten as vectors for convenience, but they are not random vectors. We assume that the
deviations of the numéraire vector from the standard and of the labour vector from the
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labour vector yielding the uniform composition of capital are uncorrelated, since the tech-
nical necessities represented by the labour vector and the choice of the numéraire relative
to the standard vector can be thought to be independent, and this independence should
show in large systems. Hence we assume that cor(m,v) = 0, hence that the covariance
cov(m,v) = 0. If this is the case, one has the well known consequence mv = nm̄v̄, where
m̄ and v̄ are the arithmetic means of the random variables consisting of the components
of m and v.

It follows that, if the covariance condition is fulfilled, the wage curve will be linear if
and only if m̄ or v̄ or both are zero. Now it turns out that, if the system is random, v̄
will be zero. For we can write, using Schefold (2016, p. 15),

nv̄ = e(l− x1) = ex2 + · · ·+ exn.

Since A is random, the left-hand eigenvector of A will be proportional to e for large n,
since the components on the rows of A are independently and identically distributed. If e
is the left-hand eigenvector of A, it is orthogonal to x2, . . . ,xn and nv̄ = 0. Hence nm̄v̄ = 0
and mv = 0. Note the converse result, which follows: If the system is random and the
wage curve is linear, we have v̄ = 0 and mv = 0, hence mv−nm̄v̄ = cov(m,v) = 0. This
means that, if one accepts that A is random and that wage curves are linear, one must
also accept the covariance condition – a mathematical result to be noted by the critics of
the covariance-condition.

The crucial condition that has here been added to the randomness of A is that the
covariance of m and v vanishes. This may be rewritten as cov(m,v) = cov(d, l) −
cov(d,x1)−cov(q1, l)+cov(q1,x

1). A significant correlation might here be expected for the
last term in case the matrix were nearly symmetric. But if A is random and we represent
A by its deterministic counterpart, the matrix is written as ce, and q1 is proportional
to e and x1 is proportional to c. So, e and c may be considered as independent, and
the covariance condition may be assumed and may, together with the randomness of
A, be regarded as the most plausible explanation proposed so far for the quasi-linearity
of wage curves often, but not always, encountered in empirical investigations. As we
have seen, each matrix A = ce stands as deterministic counterpart for a large class of
random matrices, namely those matrices where each row ai ≥ 0 has coefficients with a
distribution that is i.i.d. and a mean ci. It remains to derive the condition for the labour
vector, which is necessary and sufficient for a linear wage curve, given A = ce. Using
(I− ce)(I + ce

1−ec) = I and ec = 1/(1 +R), one gets

p = w (I− (1 + r)ce)−1 l = w

(
I +

1 + r

(R− r)ec
ce

)
l,

w =
R− r

Rdl + (1 +R)dcel + r[(1 +R)dcel− dl]
.

Hence, the wage curve is linear, if and only if

(dce− ecd)l = 0, and if and only if d(cel− lec) = 0.

The labour theory of value results, if l is proportional to c. The wage curve then is linear,
as it is, if d is proportional to e (Sraffa’s case), but much less is necessary. A linear wage
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curve also results, if l is orthogonal to the vector dce−ecd or d is orthogonal to cel− lec.
The wide range that is opened up if these conditions are fulfilled approximately explains
the empirical finding that wage rates are quasi-linear. To relate these conditions to the
covariance condition is more complicated and left for another occasion.

But it is worthwhile to analyse the linearity of the wage curve (3) also without assuming
the randomness of A. (3) can be rewritten as, with the normalisations l = α1x

1 + · · · +
αnx

n, d = β1q
1 + · · ·+ βnq

n, qix
i = 1; i = 2, . . . , n;

1

w
− α1β1

1− (1 + r)µ1

=
α2β2

1− (1 + r)µ2

+ · · ·+ αnβn
1− (1 + r)µn

= D(r)

The right-hand side of this equation is a residual, called D(r). The wage curve is linear, if
and only if D = 0. For this it is sufficient that α2 = · · · = αn (standard commodity case)
or β2 = · · · = βn = 0 (labour theory of value case) or that the products αiβi disappear: if
αi is not zero, βi should vanish and conversely; this is a mixed case, Moreover, if we are
dealing with approximations (αiβi small, but not zero), it helps, if µi is small, for then
1 − (1 + r)µi will not become small, leading to a large D(r), as r increases from zero to
R. Hence we can formulate:

Proposition
The wage curve will be quasi-linear, if αiβiµi remains small; i = 2, . . . , n.

This criterion is useful in empirical applications; αi, βi, µi are then indicators, which char-
acterise systems with linear wage curves.2 However, we cannot really say that small
αi, βi, µi; i = 2, . . . , n; are “causes” of quasi-linear wage curves, since a small αiβiµi
has no immediate economic meaning, whereas the randomness of A and the covariance-
condition have an interpretation: the specific structure of production in a single industry
appears as accidental in a large system.

The quasi-linearity of prices and wage rates, which we have here tried to explain,
stands in contrast to Sraffa’s (1960) results, who emphasizes the variability of relative
prices, in particular of non-basics, and speaks in his chapter on changes of technique of
a “rapid succession of switches” (Sraffa, 1960, p. 85), as one moves down the envelope,
resulting from a large number of alternative techniques with wage curves that are far
from linear. I have indicated in the first chapter of this paper how, following Kersting
and Schefold (2021), one must qualify this affirmation. There is only a small number
of efficient techniques in the relevant range of the rate of profit according to theoretical
considerations, empirical results and numerical experiments.

A similar discrepancy arises with respect to the variability of prices. Sraffa derives his
very elegant formula for the reduction to dated quantities of labour, with prices expressed

2The idea of considering the products αiβiµi as indicators is taken from Ferrer-Hernández and Torres
González (2022). They use vertically integrated systems with maximum rates of profit normalised to
R = 1. This has here been avoided, since the analysis of reswitching requires to start from the systems
themselves, and the comparison of systems on envelopes of wage curves is not possible with normalised
maximum rates of profit.
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in terms of the standard commodity:

p =
∞∑
t=0

w(1 + r)tLt =
∞∑
t=0

(
1− r

R

)
(1 + r)tAtl. (4)

Sraffa argues that the indirect quantities of labour (the labour expended t periods ago
and indirectly embodied in the present product) Lt = Atl may be quite small, if one refers
to distant periods, but that they may make their influence felt near the maximum rate
of profit, where cumulative profits on the corresponding advance of wage costs, expressed
by (1 + r)t, is large. Their weight depends on the ‘terms’ (1− r/R)(1 + r)t, which exhibit
sharp maxima for large t. These maxima have to be multiplied by the corresponding
labour input, which is small, but the product of the maximum and the labour input may
be large, Sraffa suggests, for he draws a series of such terms, with the labour inputs chosen
so that subsequent maxima seem to be of equal height. This impresses the reader, for
if different capital goods have indirect labour inputs, that are unequally distributed over
the past, their relative value must fluctuate unpredictably, as the rate of profit is varied.

However, capital goods are essentially basics, and only for non-basics or in Austrian
models is it possible to conceive of the past labour inputs to be distributed erratically
over time. If capital goods are basic, the sequence of past labour inputs will diminish
with certain regularities, as t increases. Moreover, a graphic representation of the ‘terms’
will then look quite different from the figure presented by Sraffa; the maxima will be
below the linear wage curve. A diagram for the ‘terms’ for commodities that are basic
has been drawn in Schefold (2021b) and one can use an approximation for standard prices
of basic commodities, which shows that they are, apart from the first few periods, say T ,
characterised by a regular parallel reduction. As is well known, the powers of A, under the
assumptions we have made for this matrix, At, diminish rapidly, but we get convergence,
if we multiply by the corresponding power of 1+R; we have (1+R)tAt −−−→

t→∞
p̄q̄, where p̄

and q̄ are normalised right-hand and left-hand Frobenius eigenvectors of A with q̄p̄ = 1.
One thus obtains the following modified formula for the reduction to dated quantities of
labour:

p =
∞∑
t=0

(
1− r

R

)
(1 + r)tAtl

=
(

1− r

R

) T∑
t=0

(1 + r)tAtl +
(

1− r

R

) ∞∑
t=T+1

(
1 + r

1 +R

)t
p̄q̄l + z.

(5)

The vector z is a vector of residuals, which tend to zero, if T is sufficiently large. For
details see Schefold (2021b).

The reader can verify, taking the different normalisations into account, that (2) and
(5) coincide for T = 0. This relationship, which has not been noted before, is remarkable,
not only because (2) and (5) look very dissimilar at first sight. They also belong to
different analytical approaches. (2) is based on the assumption that the non-dominant
eigenvalues are small, a plausible explanation of this condition being that the matrix is
random. (5) is based on the older tradition of expressing functions by means of an infinite
(here geometrical) series, with the only difference that, instead of omitting higher terms
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for an approximation, higher terms are approximated using the convergence of (1+R)tAt

to p̄q̄. Obviously, with T = 0, the latter approximation plays a decisive role. Nonetheless,
(5) seems to be independent of randomness assumptions; the formula only presupposes
that A is semi-positive, indecomposable, productive and diagonalisable – in short: A is
essentially an ordinary Sraffa matrix. How can (2) and (5) then become equivalent?

The immediate answer, of course, is that (2) and (5) with T = 0 can be bad ap-
proximations, if the non-dominant eigenvalues are not small. However, there is another
argument. There is hidden randomness in (5), even if T is large, and not only in (5).
It is also in Sraffa’s own equation (4), insofar as the powers At are matrices for which
the non-dominant eigenvalues – we denote them by µt,2, . . . , µt,n – tend to zero relative
to the dominant eigenvalue of At, denoted by µt,1. For we have, if the eigenvalues of
A are µ1, . . . , µn;µ1 > |µ2| ≥ · · · ≥ |µn| > 0; and if A is primitive so that µ1 > |µ2|,
µt,i = (µi)

t, hence |µt,i/µt,1| → 0; i = 2, . . . , n, for t → ∞. So, the main characteristic of
randomness, non-dominant eigenvalues tending to zero, sneaks in even in the case of or-
dinary primitive Sraffa matrices. The higher powers of A stand for repeated interactions
between the prices of basics or the quantities, if one interprets the formula for activity
levels q = d(I−A)−1 ∼= d(I + A + · · ·+ At) as an iterative planning process in T steps.
Specific information disappears in large systems that are not imprimitive.

Equation (2), which has now been buttressed with equation (5), assuming T = 0,
provides an information about the behaviour of relative prices, which we shall need later.
The rate of change of a price pi, ṗi/pi – where ṗi denotes the derivative – will become
relevant for assessing whether the expression, which will play an important role in Sections
3-5,

zi(r) =
p1(r)

(1 + r)pi(r)
, i = 2, . . . , n,

falls with r increasing from 0 to R. Assuming that the strong normalisation is possible
and using it, we now express (2) or (5) for standard prices in linear approximation as

p = l +
1

R
x1 +

r

R
(x1 − l).

On the one hand, we then get for the rate of change of an individual price

ṗi
pi

=
x1i − li

Rli + x1i + r(x1i − li)
,

so that ṗi/pi < 0, if and only if x1i < li; we can call a sector with this property labour-rich.
On the other hand, we get a condition for zi(r) to fall in terms of the rates of change.
Obviously, dzi/dr < 0, if and only if

ṗ1(1 + r)pi < p1pi + (1 + r)p1ṗi

or
ṗ1
p1
<
ṗi
pi

+
1

1 + r
,

where ṗi/pi < 0, if and only if sector i is labour-rich, which sounds plausible. We distin-
guish four cases in the following Table 1.
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ṗ1
> 0 < 0

ṗi
> 0 a b

< 0 c d

Table 1: Conditions for zi(r) to fall.

If sector 1 and i in Table 1 are both labour-poor (case a), both prices rise. Insofar,
there is an equal chance for zi to rise or to fall, because q(I − A)p = 1 and therefore
q(I − A)ṗ = 0. Hence, because of the factor 1 + r in the denominator, zi(r) will fall
in more than half of the cases, and the analogous conclusion holds for (d). It is certain
that dzi/dr < 0 in case (b). It would be certain that zi(r) rises, if the factor 1 + r was
absent; but since it is not, one will get a falling zi(r) in some cases even in case (c), that
is, if sector 1 is labour-poor, but less so than sector i. In conclusion, zi(r) will fall more
often than it rises, on average, considering many large systems. This will be important in
subsequent sections. The conclusion is based on a probabilistic consideration, which one
would perhaps not like to introduce in pure economic theory, but, in modern economics,
probability arguments are used very often.

To make inferences from trends based on averages, possibly disturbed by events, is
the approach of the modern applied economist. Sraffa wanted to alert the community of
economists to the fact that the pure neoclassical theory was flawed and that the factor
‘capital’ could, unlike land and labour, not be measured prior to the determination of
prices. It was not the only problem of pure neoclassical theory, but, in the form of
reswitching, the one that induced the most profound, at any rate effective critique. In
the meantime, the mainstream has changed, the critique must adapt to the fact that the
standards of rigour are different for applied economics. The roots of an overestimation of
the reswitching and related arguments are in Sraffa’s book itself and due to his strategy
which addressed an audience, which was different from that with which we are confronted
today.

There seems not to be much room for reswitching, if all wage curves are really close
to linearity, but we have argued that a sufficient number of them are sufficiently close
to linearity to warrant our conclusions about zi(r). Near linearity of wage curves is not
sufficient to rule out reswitching, however. Numerical examples show that the curves inter-
secting at least twice are often quasi-linear and close together (Mainwaring and Steedman,
2000). This explains why we cannot stop here but need a deeper analysis. The follow-
ing investigation is concerned with showing that the rarity of reswitching – an empirical
phenomenon, both in the isolated form and as associated with reverse capital deepening
– is in part to be explained by factors connected with randomness, but also by other
influences like the geometric properties of the reswitching body.

3 The Reswitching Body

We first must elaborate the formal apparatus already introduced in more detail. We
assume that a productive and indecomposable system is given, represented by a semi-
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positive input-output matrix of order n A ≥ 0 and a positive labour vector l > 0, with
processes (ai, li); i = 1, . . . , n; as the methods of production of the n industries. As is well
known, the normal prices of this system p will be positive for all rates of profit r between
0 and a maximum rate of profit R, and the wage rate w will fall monotonically from a
maximum at r = 0 to zero at r = R, where prices are expressed in some commodity
standard d with dp = 1. We recall that Sraffa’s standard prices are defined by the
condition d = q(I − A), where q is normalised by subsequently putting el = 1; e =
(1, . . . , 1); and ql = 1 so that the normal prices

p = (1 + r)Ap + wl (6)

result from
p = w(I− (1 + r)A)−1l

and the wage rate is w = 1− r

R
, if prices are expressed in terms of the standard commodity,

for we then have

1 = q(I−A)p = rqAp + wl =
r

R
q(I−A)p + wql =

r

R
+ w.

We shall also often need prices in terms of labour commanded or in terms of the wage

rate p̂ =
p

w
=

R

R− rp.

We assume a stationary state, in which a vector of a surplus s ≥ 0 is produced, given
activity levels q such that q(I−A) = s and q = s(I−A)−1 > 0. In this stationary state,
the capital-labour ratio can be read off from the wage curve, if one assumes that a third
form of numéraire is taken; it is set equal to the surplus: d = s. With this assumption,
output per head y, y = dp/ql, is the same for all rates of profit. At the same time, it
equals the sum of wages per head and profits per head, hence y = w + rk, where k is the
capital-labour ratio k = K/L = qAp/ql, so that the capital-labour ratio can be read off
from the wage curve diagram k = (y − w)/r. The capital-intensity is constant along the
wage curve, if and only if the curve is linear; k is then equal to the absolute value of the
slope of that curve. If the wage curve is convex, the intensity of capital falls, as the rate
of profit rises. This is a so-called neoclassical Wicksell-effect. In the opposite case, the
intensity of capital rises with the rate of profit. The intensity of capital then increases,
as the wage falls. This is a non-neoclassical or, sometimes, a ‘perverse’ Wicksell-effect.

If another method of production is available in one of the industries, its adoption leads
to another wage curve. For instance, process (a1, l1) is replaced by process (a0, l0). In the
comparison of wage curves w0 and w1, that technique has to be chosen at each rate of
profit which yields the highest real wage, and it can be shown that surplus profits induce
the change-over to the better technique. If the wage curves are linear, higher rates of profit
and lower wage rates mean that successively techniques of lower capital-intensities and
higher labour-intensities will be adopted, but if the wage curves are curved, two techniques
may have more than one switch-point in common. If wage curves w0 and w1 have two
switch-points in common at rates of profit r1 and r2, 0 ≤ r1 < r2 ≤ Ri, Ri = min(R1, R2),
we speak of reswitching.3 We speak of reverse capital deepening, if the first of these

3Usually, one speaks of reswitching only, if both switch-points are on the envelope. We called this
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two switch-points is dominated by a third wage curve, which is, however, inferior at the
second switch-point. The intensity of capital then rises at the second switch-point. The
cases of reverse capital deepening are therefore dependent on two wage curves crossing
on the envelope such that there is a “hidden” intersection of these same two wage curves
below the envelope at a lower rate of profit. Insofar, reswitching in the sense of a double
switch of two wage curves, the techniques differing in the method of production in one
industry only, is the basic phenomenon. We called this isolated reswitching in Section 1,
if one abstracts from the other techniques and their wage curves, and we called it systemic
reswitching, if both switch-points are on the envelope. Reverse capital deepening seems to
occur more often in reality than systemic reswitching, since it is quite likely that the earlier
switch-point will be dominated, if there is a sufficient number of techniques available in
various industries, the wage curves of which reach the envelope.

We speak of capital reversals, if, quite generally, an increase in the rate of profit leads
not to a fall, but to a rise of the intensity of capital. Capital reversals may be due
either to non-neoclassical Wicksell-effects or to reverse capital deepening and reswitching.
The latter two are regarded as more fundamental, since Wicksell-effects are numéraire-
dependent: A mere change of numéraire can, for the same technique, turn the neoclassical
Wicksell-effect into a non-neoclassical Wicksell-effect or vice versa. For this reason and
because the at least twofold intersection of wage curves is at the root also of reverse capital
deepening, we here concentrate on isolated reswitching.

The paradox in question is interesting as a macroeconomic phenomenon, but it may
also have a sectoral aspect, which is less known. To see this, it is useful to formally extend
the analysis to negative rates of profit, for then the same wage curves, only extended to the
interval −1 ≤ r ≤ 0, can be used to analyse the sectoral aspect. No economic meaning
needs to be associated with a negative r. This has been examined in detail in Han
and Schefold (2006). Here it suffices to observe two wage curves, which differ because
the methods of production differ in one of the industries, which intersect for some r,
−1 ≤ r ≤ 0. The two wage curves shall extend without a crossing, each to its maximum
rate of profit; both maximum rates shall be positive. Of two wage curves, which do not
intersect at all, the higher one will be better, because it has a higher maximum rate of
profit. It will also be better, insofar as the wage at r = 0 can be higher, therefore output
per head is higher – this can be read off from the wage curve at r = 0. Finally, this better
technique will use less direct labour in the sector, in which the two techniques differ in
one method of production. This can be seen by looking at the price equations at r = −1.
With r = −1, one obtains from equation (6) p̂(−1) = l. The prices must be lower for the
better technique, which is w1, say. We have w1 > w0, because q1l < q0l (numbering the

systemic reswitching in Section 1. The assumption that one switch is a crossing of wage curves on the
envelope becomes important as soon as there are alternative methods of production available also in other
industries. For it will then generically be the case that, if two wage curves cross on the envelope, only one
method in one industry will change or switch at that rate of profit, while two intersections of wage curves
below the envelope may belong to two systems that differ in the employment of several methods in several
industries. The intuitive reason for this difference is simple: if we are on the envelope, the wage rate is
maximal, given the rate of profit. If it changes, different methods will become profitable according to the
changing state of distribution, and they will generically come up one by one in a piecemeal fashion. If
the intersection is below/ between two systems using different methods in several industries, the optimal
combination of these methods has still to be found.
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activity level vectors in the same way as the wage curves). Since all other labour inputs
are the same in both techniques except in the industry where the method change takes
place, less labour is used in that industry.

If we now return to the example where w1 and w0 have one crossing between −1 and
0, we observe the curious effect that the technique, which is better at positive rates of
profit, uses more labour in the sector, where the change of technique occurs. If we take
the case of two techniques which have one switch-point between −1 and 0 and another
between 0 and the maximum rate of profit, the technique which emerges after the second
switch-point will be more labour-intensive in the aggregate and yet use less labour in the
sector in which the change takes place. The higher labour-intensity then is entirely due
to changes of relative prices. It occurs at the macroeconomic level, although less labour is
used microeconomically in the sector concerned and, indeed, in the economy as a whole.
But this effect is not numéraire-dependant, like ordinary Wicksell-effects. Although it is
thus interesting to extend the study of switch-points to the interval −1 ≤ r ≤ 0, we focus
on reswitching between zero and the maximum rate of profit in what follows. The sectoral
effect was found to occur more often than reverse capital deepening in Han and Schefold
(2006). It would deserve more attention.

As explained in the introductory sections, we estimate the probability of reswitching
by measuring the set of potential techniques, which generate two or more switch-points,
relative to the set of techniques which generate only one. The idea had been pursued
already in Schefold (1976) with the result that reswitching turned out to be not a fluke,
but to have a positive probability.

We begin with the set M(r) of methods of production (a0, l0) that have a switch with
the technique (A, l) by being exchangeable with method of production (a1, l1) in the first
sector at the prices ruling at the rate of profit r. Hence this set M(r) follows from equation
(7):

M(r) = {(a0, l0) ≥ 0 | (a0, l0)p̃(r) = p̂1(r)}. (7)

p̃(r) here is a column vector p̃(r) = ((1 + r)p̂1(r), . . . , (1 + r)p̂n(r), 1)T . It was proved
in Schefold (1976), and in a reduced form in Schefold (1971), that p̃(r) is a vector that
assumes n + 1 linearly independent values at n + 1 different rates of profit 0 ≤ r1 <
· · · < rn+1 < R, and of course, p̃(r) > 0, 0 ≤ r < R. This is what I now call the
fundamental neo-Ricardian theorem. It holds for regular systems. This means essentially
that the labour theory of value does not hold in that l is not an eigenvector of A. M(r)
is obtained as the intersection of an n-dimensional hyperplane orthogonal to p̃(r) with
Rn+1

+ . Given r, the vertices of M(r) can readily be calculated by putting (a0, l0) = zi(r)ei,
where ei is the i-th unit vector in Rn+1

+ . Inserting the zi(r)ei into (7); i = 1, . . . , n + 1;
one obtains:

z1(r) =
1

1 + r
, zi(r) =

p̂1(r)

(1 + r)p̂i(r)
; i = 2, . . . , n; zn+1(r) = p̂1(r). (8)

We here encounter the zi(r) discussed in Section 2, but we do not yet use the probabilistic
argument that the zi(r) are likely to fall. We below show the same by means of geometry
on the basis of the Lemma (statements ix and x). It follows geometrically from p̃(r) > 0
that z1(r) > 0, . . . , zn+1(r) > 0, 0 ≤ r ≤ R. It follows from the fundamental neo-Ricardian
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theorem that the n-dimensional simplex M(r) turns in space in such a manner that it is
never contained in any n-dimensional subspace for any interval, in which r moves.

Now we can express the possibility of reswitching. It occurs for all potential techniques
in the intersection of M(r1) ∩M(r2); 0 ≤ r1 < r2 ≤ R. This intersection is an (n − 1)-
dimensional hyperplane, restricted to the Rn+1

+ , as the intersection of two n-dimensional
simplices. A question then is how probable it is that we find an actual technique, that is
in M(r1) and also in M(r2), if r1 and r2 are given. The answer is: It is improbable, since
the n-dimensional measure µ(M(r1) ∩M(r2)) is zero, and zero in particular relative to
the n-dimensional measure of µ(M(r1)), which is positive.

But this does not mean that the probability of reswitching generally is zero, since,
given r1, we can ask whether reswitching will turn up if we vary r2. It was shown in
Schefold (1976) that the measure of all the possibilities then is positive. We define

M? =
⋃

0≤r2≤R
r2 6=r1

M(r1) ∩M(r2).

This is the reswitching body. Its measure will be positive, µ(M?) > 0, if the intersection
of M(r2) with M(r1) covers an open n-dimensional neighbourhood on M(r1).

Actually, we could iterate this procedure. There could be more than two switch-points.
We should find the set of points generating m switch-points, m < n, by considering the
intersection

M?
m = M(r1) ∩ · · · ∩M(rm); 0 < r2 < · · · < rm < R; r1 6= ri ∀i.

Again, this set is of measure zero relative to M(r1), if the r2, . . . , rm are given, but if
they are variable and if the M(ri) twist in space, they will in the end cover an open
neighbourhood in M(r1), and obviously these sets must be contained in each other with
M(r1) ⊇M? ⊇M?

3 ⊇M?
4 ⊇ · · · ⊇M?

m. The sets will be nested like Russian dolls.
It is clear that one point will be in common to all these sets, it is (a1, l1). For M?

m is
given by equations (7), taken for m different rates of profit. Because of the fundamental
neo-Ricardian theorem, these equations will all be independent and the solutions will be
an (n+ 1−m)-dimensional set, restricted to non-negative values. Solutions for higher m
will be contained in those for lower m. If m rises to n+1, the solutions of the corresponding
equations (7) will consist of one point only, because we will have as many unknowns as
we have independent equations, and this solution can only be (a1, l1), which belongs to
all these sets.

This plethora of switch-points may appeal to the critics of capital theory, but we
shall see that the possibilities even for only reswitching shrink as the number of sectors
increases. Unfortunately, to determine the measure of the reswitching body is not an
elegant mathematical problem. Or it is my fault that I have not been able to render it
more tractable. I apologise for the intricacies that follow.

Lemma. Properties of the reswitching body.

(i) If (a1, l1) > 0, M(r2) bisects M(r1) into two parts, each not empty, seperated by a
hyperplane of dimension n− 1, containing M(r1) ∩M(r2), which is convex.
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(ii) M? does not cover the simplex M(r1): M(r1)−M? 6= ∅.

(iii) M? is star-shaped, in that every point is connected with (a1, l1):
P ∈M?, P1 = (a1, l1)⇒ PP1 ⊂M?.

(iv) M? is concave: Every point in M(r1) that is not in M? is connected to P1:
P ∈ {M(r1)−M?} ⇒ {PP1−P1} ⊂ {M(r1)−M?}. Each of the (apart from a1, l1)
disjoint two parts of M(r1) −M? that result from the bisection according to (i) is
convex. This holds also if (a1, l1) is on the boundary of M(r1).

(v) M? is symmetric in the sense that any point in the reswitching body, connected to
the star-point, is on a straight line, which is wholly in the body, to the extent that
the points on the line are semi-positive: P0 = (a0, l0) ∈M?, P (λ) = {λ(a0, l0) + (1−
λ)(a1, l1) ≥ 0} ⇒ P (λ) ∈M?.

(vi) The same holds for the complement of M? in M(r1): P0 ∈M(r1), P0 /∈M?, P (λ) =
{λ(a0, l0) + (1− λ)(a1, l1) ≥ 0} ⇒ {P (λ)− P1} /∈M?.

(vii) P1 = (a1, l1) is the only star-point of M?.

(viii) Generalising (ii): if zi(r) is strictly monotonous in any interval 0 ≤ ra ≤ r ≤ rb <
R, there is no reswitching on coordinate axis i in [zi(ra), zi(rb)] and these points
cannot belong to M?.

(ix) The movements of the zi(r) are restricted by the following relationship, which we
call the star-equation:

a11
z1(r)

+ · · ·+ a1n
zn(r)

+
l1

zn+1(r)
= 1; 0 ≤ r < R.

(x) The direction of the movement of the zi(r) is constrained by the derivative of the
star-equation (ix):

a11
(z1(r))2

z′1(r) + · · ·+ a1n
(zn(r))2

z′n(r) +
l1

(zn+1(r))2
z′n+1(r) = 0.

Proofs and comments: (i) The bisection is not on the bounding of M(0), since it goes
through (a1, l1), with 0 < l1 < zn+1(r1). The intersection of convex sets is convex. (ii)
follows from the strict monotonicity of zn+1(r) = p̂1(r). (iii) M? is star-shaped, because
(a1, l1) is contained in M(r) for all r. (iv) Points on the line segment contained in M?

cannot exist because of (iii). If P1 ∈ M(r1) − M? and P2 ∈ M(r1) − M? are on the
same side of the bisection, but there is P3 ∈M? on the connecting line segment between
them, there must be r3 such that P3 ∈ M(r3). But, then, M(r3) separates P1 and P2,
contrary to the assumption. (v) and (vi) follow from the fact that M(r1)∩M(r2) is a full
(n−1)-dimensional subspace, only restricted to the non-negative orthant. That (a1, l1) is
the only star-point (vii) follows again from the fundamental neo-Ricardian theorem. To
see it, suppose there was a second star-point. It could be connected to the first within
M? because of (v). A line going through both points would have to be in all M(r) in
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Rn+1
+ , hence p̃(r) would have to move in the plane determined by the straight line and

the origin, which is impossible, if the system is regular. (viii) is proved in the same way
as (ii). It may be noted that no reswitching will take place also in the neighbourhood of
the coordinate axis, on which reswitching cannot take place, except for flukes. (ix) follows
from

n∑
i=1

a1i
zi

+
l1
zn+1

=
n∑
i=1

a1i(1 + r)p̂i(r)

p̂1(r)
+

l1
p̂1(r)

=
p̂1(r)

p̂1(r)
= 1.

This means that, if zi(r) grows strongly, the other zj(r) collectively have to contract. (x)
is obtained by differentiating (ix). If n = 2, because z′n+1(r) > 0 and z′1(r) < 0, z2(r) may
have to increase. But the movement according to the star-equation consists broadly in a
contraction of z1(r), . . . , zn(r), given the rise of zn+1.

We have seen that the simplex M(r) is spanned by zi(r)ei, that is, by points on the
coordinate axes that move with r according to functions which depend on the prices p̂i(r),
determined by the system (A, l). If n = 2 and zn+1 is on the vertical ordinate, M(−1)
is horizontal, zn+1 = l1 and z1(−1) and z2(−1) are infinite. As r rises from −1 to R,
M(r) is a triangle with its tip going up and z1(r) and z2(r) getting smaller, until M(R)
is vertical. Reswitching will be associated with a non-monotonicity of the intersection of
the edges of M(r1) and M(r2).

We now want to show that the reswitching body is also spanned by points, but they
are not on the coordinate axes in general, but on the semi-positive quadrants of the two-
dimensional coordinate hyperplanes Hij; 1 ≤ i < j ≤ n+1; of which there are n(n+1)/2.
Since p̃(r) > 0, the n-dimensional hyperplane, in which M(r) is contained, will cut every
Hij in a line hij(r) which, restricted to the semi-positive orphant, describes the edge of
M(r) between the vertices zi(r) and zj(r), on the coordinates i and j, which span Hij.
These edges hij(r) of M(r) are given by the set of points (a0, l0) = xijei + yijej fulfilling
(7) for given r, and this yields the equation:

(1 + r)(xij p̂i(r) + yij p̂j(r)) = p̂1(r) (9)

We thus get a straight line, given r, with yij as a function of xij. These lines are well-
defined and connect the respective vertices, because all prices are positive. This holds for
1 ≤ i ≤ j ≤ n+ 1, since we defined p̃n+1 = 1.

We now turn to M(r1)∩M(r2). This set has only the intersections of hij(r1) and hij(r2)
in common in Hij. These intersections follow from equation (7), inserting r1 and r2 for
r to obtain two equations. The intersections will be denoted as qij(r1, r2), considered as
vectors. The vectors can be written as qij = xijei + yijej. The hij(r1) and hij(r2) do not
necessarily intersect in Rn+1

+ , but may have negative components or their intersection may
diverge to infinity in certain interesting special cases. We write qij+, if the components are
semi-positive, and we get the interesting proposition:

Proposition. M(r1) ∩M(r2) is spanned by the qij+.

Proof. If P is in the convex hull of the qij+, P is in M(r1) and M(r2). Conversely, any P
in M(r1) ∩M(r2) is represented by a vector that fulfils equation (7) for r = r1, r2. The
set of solutions is an (n− 1)-dimensional manifold, the intersections of which with Rn+1

+

is spanned by the extreme points qij+.
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Hence M? is generated by the movement of the qij+ with r2, given r1, so that the
qij+ leave a trace on hij, which is denoted byf+

ij . The qij leave a trace on hij that may

extend beyond Rn+1
+ , which is denoted by fij. The fij are connected line segments, except

where a qij diverges to infinity. M? is contained in the convex hull of the f+
ij , where

f+
ij = fij ∩ Rn+1

+ .
We now express the qij in terms of the prices of (A, l), using (7). We limit the

calculations to the case r1 = 0 and r2 = r̄, 0 < r̄ ≤ R for several reasons. There is no loss
of generality involved, insofar as choosing the possibilities of starting from a high r1 and
looking for a low r2 as cases for reswitching and the opposite possibility, choosing a low r1
and looking for a high r2, are symmetric; it suffices to consider only one. To choose r1 = 0
has a deeper reason. If one formally considers also negative rates of profit, we saw that
M(−1) is a horizontal triangle, if n = 2, while M(R) is vertical. An economically relevant
transition takes place in the middle at r = 0. As we noted above, paradoxes similar to
reswitching, but not identical with it, are found, if one looks for intersections between
wage curves in the interval −1 ≤ r ≤ 0. Han and Schefold (2006) show that switches in
that interval indicate that techniques differ in their sectoral capital-intensity, while the
effects become macroeconomic in that they affect the aggregate capital-intensity, if r > 0.
Studying this transition helps to extend the analysis, if one is interested in the sectoral
paradoxes and their connection with reswitching. However, we here focus on the interval
[0, R], since the debate has focused on this case. It must be kept in mind in what follows,
that reswitching in the exact sense of two switch-points, with the second indicating an
increase of the capital-intensity, as the rate of profit is raised beyond the switch-point,
requires r1 > 0, whereas r1 = 0 means that the two capital-intensities are equal, precisely
because we are dealing with the transition.

Our calculations begin with the most important special case, i = 1 and j = n + 1,
where z1 is strictly monotonically falling and zn+1 strictly monotonically rising (z1 =
1/(1 + r), zn+1 = p̂1(r)). Inserting q1,n+1 = x1,n+1e1 + y1,n+1en+1 in (7) for r = 0 and
r = r̄ results in the equations (omitting subscripts, where not necessary, and writing r for
r̄):

xp̂1(0) + y = p̂1(0)

x(1 + r)p̂1(r) + y = p̂1(r).

Hence

x =
p̂1(r)− p̂1(0)

(1 + r)p̂1(r)− p̂1(0)
, y =

rp̂1(0)p̂1(r)

(1 + r)p̂1(r)− p̂1(0)
. (10)

Clearly, x and y remain positive for 0 < r < R. The limits are:

x(R) = lim
r→R

1− p̂1(0)/p̂1(r)

1 + r − p̂1(0)/p̂1(r)
=

1

1 +R
.

y(R) = lim
r→R

rp̂1(0)

1 + r − p̂1(0)/p̂1(r)
=

R

1 +R
p̂1(0).

Further we get, using the rule of de L’Hospital,

x(0) = lim
r→0

p̂′1(r)

(1 + r)p̂1(r) + p̂′1(r)
=

1

1 + p̂1(0)/p̂′1(0)
< 1.
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y(0) = lim
r→0

p̂1(0)[p̂1(r) + rp̂′1(r)]

(1 + r)p̂′1(r) + p̂1(r)
=

p̂1(0)

1 + p̂′1(0)/p̂1(0)
.

In the case of the labour theory of value, we can use Sraffa’s wage curve w = 1− r/R.

Standard prices pi are equal to prices p̂i(0) at all rates of profit, hence p̂i(r) =
R

R− rpi(0).

We get

x(r) =

p̂1(0)

(
R

R− r − 1

)
p̂1(0)

(
1 + r

R− rR− 1

) =
1

1 +R
.

y(r) =
(p̂1(0))2

rR

R− r
p̂1(0)

(
1 + r

1 +R
R− 1

) =
R

1 +R
p̂1(0).

The limits obtained for x(0) and y(0) can in the case of the labour theory of value be
shown to be equal to x(R) and y(R), respectively.

For i = 2, . . . , n and j = n+ 1, one finds that x(r) > 0, 0 ≤ r ≤ R, as above, but y(r)
may become negative in some range: a fact which we shall have to interpret below. In
the case of the labour theory of value, one gets:

x =
p̂1(0)

p̂i(0)

1

1 +R
, y =

R

1 +R
p̂1(0).

No general results seem to exist for the remaining cases 1 ≤ i < j ≤ n, except if the
labour theory of value holds: then, x and y will diverge.

4 Illustration by Means of Diagrams

We illustrate the preparatory results geometrically and empirically. If n = 2, and if we
stick to the assumption r1 = 0 and look for switch-points in 0 < r < R, we get a three-
dimensional diagram. If the labour theory of value holds, q13 = [1/(1+R), Rp̂1(0)/(1+R)]
and q23 = [p̂1(0)/(1+R)p̂2(0), Rp̂1(0)/(1+R)] and q12 diverges. The simplex M(r) stands
up, starting from M(0), turning around an axle fixed by q13 and q23, representing M?

and containing P1 = (a1, l1). The lines h12 remain parallel, for q12 diverges, as we saw
above (Figure 1):

If n = 2, the variation of relative prices of a regular system with r will cause the
simplex to turn in some way such that M(0) ∩ M(r) always contains (a1, l1) – M? is
starshaped. Note that l > 0 so that (a1, l1) is always above h12(r). M(r) turns vertical
at r = R. As we saw, z1(r) = 1/(1 + r) will always fall and z2(r) = p̂1(r)/(1 + r)p̂2(r) will
also tend to do that; the factor (1+r) helps to get this effect (see Section 2). The likeliest
case seems to be (it is at any rate the one most frequently observed in our empirical
investigation, see below) that x13 falls, while x23 rises; the latter is possible with z2(r)
falling, if p̂1(r) goes up fast enough. M? will then cover a larger area of M(0); see Figure
2, where z2 is not monotonous. As Ricardo realised in 1815 (Ricardo, 1951), the price of
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3
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x23

z2(0)

z1(0)

z3(0)

h12(0)

M(0)

z3(r2)

M(r2)

z3(r3)

M(r3)

q13

q23

x13

y13
M?

P1

Figure 1: Labour theory of value case

the product of a capital-intensive industry rises relative to other prices with a rise of the
rate of profit. Hence it seems that a high capital-intensity in sector 1, the one examined
for reswitching, is favourable for it, and this will be confirmed in the next example.

Prices in terms of wage rate and Sraffa’s standard prices do not deviate from linearity
as much and as often as once had been thought both for theoretical reasons and according
to empirical findings summarised in Section 2. However, z2(r) need not always be falling,
as in Figure 2, and it need not be monotonous. Figure 3 illustrates the possibility that
z2(r) increases in some interval, so that x23 increases as well, with y23 < 0 but y13 > 0,
and y12 > 0.

We speak of a transgression on coordinate i, if zi(r) rises beyond zi(0) in such a way
that q12 > 0. A transgression on one coordinate means that there are regressions on others
according to star-equation (ix), Lemma, Properties of the Reswitching Body, above.

Even without transgressions, our geometrical analysis has shown:

Proposition. If n = 2, if the system is regular and if (a1, l1) > 0, the reswitching
body consists of two triangles with vertices meeting at (a1, l1) > 0 with equal angles, and
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1

3

2
z2(0)

z1(0)

z3(0)e3

h12(0)

M(0)

M(r3)

z3(r2)

z3(r3)

q13(r2)

q23(r3)

M?

M??

f13

f23

M(r2)

q23(r2)

q13(r3)

P1

Figure 2: M? (dark green area) is contained in the convex hull M?? (light green area) of
f13 and f23 and this is contained in a simplex M???, spanned by f̄13 = q13(r2), f̄23 = q23(r3)
and z3(0)e3, to be considered in Theorem 1 below. The vertices 1 and 2 move toward the
origin, 3 away from it (Lemma ix). Accordingly, z1(r) and z2(r) are falling, so is x13, but
x23 increases, as the line segment M(0) ∩M(r) turns around P1 = (a1, l1) and z2 is not
monotonous. Note that q12 is obtained as the point where a line through q23 and q13 hits
the plane H12 and intersects with h12(0) outside the non-negative orthant (not drawn).

q13(r1, r2) and q23(r1, r2) move with r2 in opposite directions, given r1.

We change over to higher dimensions. As a preliminary, it is possible to give a visual
representation of the reswitching body M? in the case n = 3, for, although the 4 vertices
of M(r) are then on 4 coordinate axes in 4-dimensional space, M(r) is a three-dimensional
body and M(r1)∩M(r2), r1 6= r2, is a two-dimensional intersection, because the movement
of p̃(r) is never enclosed in any subspace. Figure 4 shows M(0) as a tetrahedron, cut
by a plane, the cut representing M(0) ∩M(r). The movement of M(r) with r results in
a reswitching body indicated by the green area. It is assumed that prices deviate only
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1

3

2

z2(0)

z1(0)

z3(0)

z2(r)

z1(r)

q13(r)

q12(r)

q13(r̄)

q12(r̄)

q23(r)

P1

h23(r)

h23(0)

h12(0)

Figure 3: The case of a transgression. Note that q23 is in H23, with y23 < 0, x23 > 0, in
the point of H23 where the three lines h23(0), h23(r) and the straight line through q13 and
q12 meet. The green area illustrates how M? might grow with a further increase of r to
r̄.

moderately from the labour values. This implies that the cut is such that the semi-positive
qij+ are on the three edges h14, h24, h34, spanning M(0)∩M(r), the other qij being outside
R4

+ (Figure 4).
If prices are close to labour values, the reswitching body is near the tip, representing

labour, of the tetrahedron, while a transgression would take place at one of the vertices
of the basis.

We have two possibilities, each limited, to represent systems with large n in such a
way that our insights from the three-dimensional example remain useful. If (a0, l0) ∈M?,
(a0, l0) will fulfil (2) for some r = r1 and r = r2 6= r1, and this may be written as, with
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P2

P4

P3

P1

C

D

B

A

h13

h23

h24

h14

h34

P ?
1 f24

f34

f14

Figure 4: If n = 3, M(0) becomes a tetrahedron, spanned by the vertices P1, P2, P3, P4

on the four coordinate axes. M(0) ∩M(r) results from a cut as a triangle, if one vertex
(P4 for labour) is above the plane, three others (for the commodities) below. A cut with
four corners A,B,C,D is also possible, with two vertices on each side of the separating
hyperplane. The reader may here verify (i) – (x) of the Lemma, in particular the two-
sided concavity of M? and the convexity of the two parts of the bisected tetrahedron. The
star-point is here denoted P ?

1 . M? appears as bordered by straight lines, because we have
drawn only two intersecting two-dimensional hyperplanes. The geometry is somewhat
more complicated and the concave surfaces get smooth, if more hyperplanes are drawn,
but we do not go into the details for reasons of space.

r = r1, r2:

a01(1 + r)p̂1(r) + a0i(1 + r)p̂i(r) + l0 = p̂1(r)−
∑
j 6=i

a0j(1 + r)p̂j(r) = φi(r). (11)

The formula shows that the insights gained from examples with n = 2 can be extended to
n > 2 under certain conditions. We have visualised how M? is situated in M(r1), that is,
how likely it is that a method with a switch at r = r1 generates a second switch at some
r2. The reswitching possibilities were seen to depend on the rates of change of prices and
of the zi(r), for instance. The constellations will remain essentially the same, if φi(r) is
monotonically rising, and this will be the case, if we replace (a0, l0) in the formula above
by (a1, l1), for then the left-hand side will rise monotonically, hence also φi(r). So we get
an approximation for all (a0, l0) in the vicinity of (a1, l1).
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The other possibility is to restrict the analysis to vectors with a0j = 0, j 6= i, using
the prices of the n-dimensional system and thus transcending a three-dimensional model.
For this, an empirical investigation has been undertaken.

5 An Empirical Investigation

The prices of a system (A, l) have been calculated, taking as the system an input-output
matrix for Germany of the year 2011, using a data set published by Zambelli as supple-
mentary data for Zambelli (2018). The calculations were made by Jakob Kalb (Kalb,
2021), to whom I owe thanks. Prices with a uniform rate of profit can be calculated,
as has been done in the last four decades. Section 2 refers to that literature and dis-
cusses its main result: prices as a function of the rate of profit do vary with distribution,
but, if expressed in terms of labour commanded or as Sraffa’s standard prices, they turn
out to be often quasi-linear, mostly monotonous and inflection points are not frequent.
Section 2 mentions proposals to give more precision to such characterisations and to ex-
plain them. Here, we are not concerned with the prices directly, but with the reswitching
body, which ultimately depends on the movement of the vertices of M(r), hence on the
zi(r); i = 1, . . . , n+ 1; where, as above,

zi(r) =
p̂1(r)

(1 + r)p̂i(r)
; i = 1, . . . , n; zn+1(r) = p̂1(r).

All 32 curves zi(r) were calculated and represented in diagrams. In accordance with our
results of Section 2 and with the geometrical properties of the reswitching body, a clear
majority of curves fall monotonically and are convex. Only one curve is not convex, and
five curves rise after an initial fall.

Given the zi(r), it is elementary to deduce the edges hij(r) of M(r) and the inter-
sections qij in each coordinate hyperplane Hij. The Hij are numerous. Relevant are the
H1,n+1, . . . , Hn,n+1, for, as above, the x-component of qij = xijei + yijej is positive for all
i, if j = n + 1. Hence xi,n+1(r) was calculated from (10) for i = 1, . . . , n. In addition,
ti = xi,n+1(r)/zi(0) was calculated for i = 1, . . . , n in order to analyse potential cases of
transgression, and only in cases of transgression, the Hij, j 6= n + 1, play a role, as we
shall see (R3). Results:

R1. Of 31 curves for ti, only 4 are not monotonous, 19 are monotonically falling and
8 rising. Three cases of transgression were found in that ti rises above one, as in
Figure 3. The variation of ti was less than 10% in 19 of 31 cases. These results were
obtained when treating the sector Agriculture, hunting, forestry and fishing – which
had been listed first in Zambelli’s data set – as the first sector, i.e. as the sector in
which reswitching is examined.

R2. The calculations were repeated and extended for a German input-output matrix of
2014, which had previously been used for the two-country and five-country cases in
Kersting and Schefold (2021), based on the 2016 Release of the World Input Output
Database. After adjustment, ti was calculated for 54 sectors. 31 curves were falling,
18 rising and only 5 not monotonous. Transgression occurs in 10 of 54 cases, in that
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ti rises above one. In a second round of calculations, the first sector (which had
happened to be Crop and animal production, hunting and related service activities)
was exchanged with a capital-intensive sector (capital-intensity measured in labour
values) Manufacture of basic metals, which therefore now produced the first good
and became the one for which reasons for a low or high likelihood of reswitching
were being sought. Here, ti rose above one in 39 out of 54 cases. In 15 of the cases,
ti > 1 occurred even for r = 0, and this happened, if zi(r) was monotonically rising,
implying that p̂1(r) rose relatively to (1 + r)p̂i(r) – a phenomenon characteristic for
capital-intensive production according to Ricardo’s observation referred to above.
If, however, the sector Financial service activities, except insurance and pension
funding was promoted to the role of sector one, only 2 in 54 cases resulted in a rise
of ti above one. Also, the majority of curves now were falling (47 out of 54).

The results reported so far are general and are not confined to the use for a visu-
alisation in three dimensions; however, they will now be used for this purpose by
calculating f1,n+1, fi,n+1 and f1,i in three dimensions. These line segments are pro-
jected into the plane H1,i. The convex hull of the projected line segments is called
Ci; i = 2, . . . , n. A vector (a0, l0) of the form (a01, 0, . . . , 0, a0i, 0, . . . , 0, a0n, l0) is in
M? and generates reswitching only, if its projection is in Ci (Figure 5).

a01

l0

a0i

z1(0) = 1

zn+1(0)

zi(0)

M(0)

fi,n+1

f1,n+1

x1,n+1(r)

xi,n+1(r)

·

Figure 5: Projection of the reswitching body with its convex hull according to R2 above.

This is a necessary condition, but not sufficient because, by taking the convex hull,
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we have covered the concavities of M?. Going from 1 to n, we get by projecting in
H1,2, H1,3, . . . , H1,n (n − 1) pictures of the three-dimensional surface of the convex
hull of M?. The analysis could be extended to the interior of M? by calculating
φi(r) and using formula (11), but this has so far only been considered in theory. By
contrast, the Ci have been calculated and drawn by Jakob Kalb from the derived
data on prices, using the input-output table with 31 sectors of 2011 mentioned above
and used for R1. Now we get R3:

R3. We now return to the calculations for the case of 31 sectors, based on Zambelli’s
data of the year 2011. If Agriculture, hunting, forestry and fishing is used as sector
one, the convex hulls are visibly very narrow and reflect the fact that the projected
variations of q1,n+1 and qi,n+1; i = 2, . . . , n; are very narrow, and this means that
surfaces, of which the hulls C2, . . . , Cn are projections, must be very narrow. The
conclusion is valid, since Mi(0) is very close to the plane, because p̂1(r) rises very
slowly, except near r = R, as can be seen from the corresponding price diagram. In
all but two cases, the projected line segments of f1,n+1 and fi,n+1 are quite short,
and f1,i is empty, because q1,i(r) is not semi-positive. Only two cases are different
and show a transgression, implying that a short stretch of f1,i appears (Figures 6
and 7).
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Figure 6: Three representative cases without transgression, designated as C2 (a), C8 (b)
and C19 (c) in Kalb (2021). In each case, the abscissa shows the interval between 0 and
z1(0) = 1, while the ordinate stretches from 0 to zi(0) for i = 2, 8, 19.

It turns out that Coke, Refined petroleum and Nuclear fuel is the most capital-
intensive sector. If it is chosen as sector one, ten cases of transgression are found and
the projected convex hulls are a little less narrow in the 21 other cases. Qualitatively,
the pictures are quite similar. Finally, if the least capital-intensive sector, Sale,
Maintenance and Repair of Motor Vehicles and Motorcycles, is taken as sector one,
the projected convex hulls become very narrow in most cases and no transgression
occurs.
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Figure 7: Left diagram: One of only two cases of transgression, which appear, if Agri-
culture, hunting, forestry and fishing is sector 1: C21 (a). On the right, one of ten trans-
gressions is represented, if Coke, Refined petroleum and Nuclear fuel is chosen as sector
1: C19 (b).

6 Five Theorems on the Probability of Reswitching

Our findings justify the assumptions of the following theorem:

Theorem 1. Assumption (A): Let a productive indecomposable system (A, l) be given,
A ≥ 0, l ≥ 0, (a1, l1) being the first process. An alternative process (a0, l0) is as profitable
as process (a1, l1) at r = 0. The probability as defined above for the existence of a reswitch
for (a0, l0)

(1.1) is zero, if the labour theory of value holds,

(1.2) is positive, if the system is regular,

(1.3) tends to zero with n→∞ for r in [ε, r̄], 0 < ε < r̄ < R, if the system is regular and
if the movement of relative prices is bounded by the condition

p1(r)

pi(r)
< (1 + ε)

p1(0)

pi(0)
(?)

for i = 2, . . . , n.

Proof. (1.1) and (1.2) were proved in Schefold (1976); the main arguments have been
repeated here. As to (1.3), the condition, rewritten as

p1(r)

p1(0)
< (1 + ε)

pi(r)

pi(0)
≤ (1 + r)

pi(r)

pi(0)
,

implies
p̂1(r)

p̂1(0)
− 1 < (1 + r)

p̂i(r)

p̂i(0)
− 1,
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hence
p̂1(r)− p̂1(0)

(1 + r)p̂i(r)− p̂i(0)
<
p̂1(0)

p̂i(0)
.

The left-hand side is equal to xi(r) according to (10), extended from i = 1 to i = 2, . . . , n,
the right-hand side to zi(0). The xi(r) are continuous in [ε, r̄] and have a maximum x̄i.
This means that the fi,n+1 extend on hi,n+1 up to maxima f̄i; the corresponding vector is
f̄i. The f̄i, together with zn+1en+1, span a simplex M??? that contains the tip of M(0),
M? and its convex hull M?? (compare Figure 2) and is contained in M(0). Define, using
the euclidean vector norm ‖·‖, ‖f̄i − zn+1en+1‖/‖ziei − zn+1en+1‖ = γi. Clearly, γi < 1.
Introduce a coordinate system and the euclidean metric in the n-dimensional hyperplane
H0 containing M(0), let the points corresponding to ziei; i = 1, . . . , n+ 1; be represented
by vectors vi in H0. The n-dimensional measure µ of M(0) then is

µ(M(0)) =
1

n!
|det(v1 − vn+1, . . . ,vn − vn+1)| .

We denote the corresponding vectors in H0 spanning M??? by v̄i. The v̄i − v̄n+1 are
shorter than the vi − vn+1 by the factors γi; i = 1, . . . , n; so that

µ(M???) =
1

n!
|det(v̄1 − v̄n+1, . . . , v̄n − v̄n+1| =

1

n!
|det(γ1(v1 − vn+1), . . . , γn(vn − vn+1))| .

Hence µ(M???) = γ1 · . . . · γnµ(M(0)), and since µ(M???) contains M?, the probability for

reswitching
µ(M?)

µ(M(0))
is at most γ1 · . . . · γn and tends to zero for n→∞. QED.

On the one hand, the theorem overstates the conditions necessary for the probability
of reswitching to tend to zero for n→∞, because the estimate is based on the convex hull
of M? and does not take the concavity of the reswitching body into account, which is like
a concave lens, very thin (ultimately one point) in the middle, but potentially thick on
the margin around it. On the other hand, the assumptions of the theorem exclude strong
variations of prices, which lead to transgressions. If xi(r) > zi(0), M? is still contained in
M(0), because the analysis is confined to semi-positive (a0, l0). But points exist that are
like reswitch-points in that they belong to the hyperplanes containing M(0) and M(r), for
some r, 0 ≤ r ≤ R. They could be called pseudo reswitch-points; they are not contained
in simplex M??? that contains the tip of M(0), M? and the convex hull M?? of M?.

In order to include transgressions in our analysis, we begin with a heuristic description
of the possible constellations. M(0) is bisected by M?? into the top part Mt (defined as
the top because it includes the tip, where there is no reswitching), and the bottom part
Mb between M?? and the basis B (the top may also reach down to the basis, as we shall
see). One shows as in the Lemma that Mt and Mb are disjoint and convex and not empty.
It is also clear that they are not of measure zero for any given finite n. The basis B is
an (n− 1)-simplex spanned by the endpoints of zi(0)ei; i = 1, . . . , n; which coincide with
the endpoints of fi, the vectors that go from the tip of M(0), zn+1en+1, to zi(0)ei. Under
the assumptions of Theorem 1, there is no reswitching at basis B. Transgressions imply
that neighbourhoods, possibly edges and entire simplices of lower order contained in B
become part of the reswitching body.
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We distinguish two kinds of transgression at vertex i; i = 2, . . . , n; a weak transgres-
sion, if fi,n+1 contains the vertex zi(0)ei, and a strong transgression, if fi,n+1 lies entirely
beyond the vertex on hi,n+1 (Figure 7 left and Figure 7 right). We call a vertex empty,
if there is no transgression (Figure 6). Note again that vertices 1 and n + 1 are always
empty. Figure 8 illustrates the three possibilities for the vertices in the case n = 3, with
the convex hull M?? of M?. Compare with Figure 4, where all vertices are empty.

P7

P6

P1

P4

P3

P2P5

f14

f34

f24

Figure 8: The convex hull M??, if n = 3 and vertices 1 and 4 are empty, vertex 2 shows
a case of a weak and vertex 3 of a strong transgression.

The interested reader may draw such diagrams in the case n = 3 for all conceivable
constallations, like two empty vertices and one weak transgression, but not all are eco-
nomically possible. Three transgressions simultaneously are excluded, because vertex one
is always empty (we proved in Section 3 that x1,n+1(r) < z1(0) = 1 for 0 ≤ r ≤ R). Note
that if we could have strong transgressions at all three vertices of the basis, M?? would
be empty because the convex combinations of f14, f24, f34 would entirely lie outside R4

+

(“below” the basis P1P2P3). By contrast, the probability of reswitching would tend to
one, if we could have weak transgressions on all vertices P1, P2 and P3 at the basis. In the
present case of Figure 8, the transgressions “induce” a boundary of M?? on the basis near
P2 and P3, bordered by P5P2, P2P6, P6P7 and P7P5. Again, if the mass of reswitch-points
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on and above corresponding to this area becomes large enough as n tends to infinity, the
probability of reswitching will not go to zero as in Theorem 1. At the same time, it is not
true anymore that the top is separated from the basis. Area P6P3P7 is part of the top Mt

in Figure 8.
It is clear from simplex theory that there are hyperplanes of order n− 1 which bisect

M(0) and M?? in such a way that all empty vertices are on one side and all vertices with
transgressions on the other (compare points A,B,C,D in Figure 4). It is intuitive that,
with the method employed in the proof of Theorem 1, the measure of that mass of points
of M?? which is in the upper part will be zero relatively to that of M(0), but that cannot
be said for the lower part. The question comes up, addressed in Schefold (2016), whether
there is empty room in the upper part of M(0) in this new division to accommodate
the points near the basis of M?? with the result that M??, partly shifted into the empty
spaces, will be contained in a simplex like M(0), with only the fi shortened.

Whether this will be possible depends highly on the number of empty vertices relative
to all vertices. Our empirical investigation has shown (for details see Section 5) that the
zi(r) are predominantly monotonous and transgressions rare on average, in that they are
rare if the capital-intensity of sector 1 corresponds to the average or is lower than that.
Since we are here concerned with the the probability of reswitching in models with many
sectors, the probability has to be calculated for the average case. The number of empty
vertices is more than half the number of all vertices, and this is what we should expect
also on theoretical grounds: on the one hand because prices tend to be quasi-linear (as
we saw in Section 2), on the other, more directly, because Sraffa prices, by virtue of the
normalisation, must in part go up, in part down. Since zi(r) = p1(r)/(1 + r)pi(r), the
factor 1/(1 + r) implies that the downward pressure prevails. This has been shown in
detail in Section 2 for those zi for which p1(r) and pi(r) can be approximated by equation
(4) or (5) with T = 0 – the majority of price curves according to the empirical literature
quoted in Section 2 – and it is in accordance with (ix) and (x) of the Lemma. If the
majority of the zi(r) are falling, compensating for the rise of zn+1(r), the majority of the
vertices must be empty. The conclusion is essential for what follows, in that it motivates
the key formal assumptions of theorems 2-5.

The vertices can be numbered so that vertices 1, . . . ,m are empty and m + 1, . . . , n
show transgressions. We suppose that m/n > 1/2 and that this ratio tends rather to rise
than to fall with n, because larger systems will have more random properties. Of course,
these are so far only broad tendencies, which can be given a more precise meaning only
in specific circumstances – what is needed is a theory of partially random matrices.

We simplify the presentation by using the diagrammatic technique developed for the
case n = 2, but interpret the edges of M(0) as pertaining to a simplex of higher dimension
n. Also, we draw M? as if the (n− 1)-dimensional surfaces bordering it were flat (cf. the
remark made in the legend to Figure 4). These surfaces have (a1, l1) in common. We
represent them schematically as line segments intersecting at (a1, l1).

We draw the following diagrams assuming that there is an empty vertex on the left and
a vertex with transgression on the right; the drawing of the other possible constellations
is left to the reader.

We have generally assumed that the system is basic and explained our reasons for
doing so, but non-basics have played an important role in an earlier phase of the debate
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about capital theory, and, anyway, (a1, l1) is not necessarily positive, it may fall on the
boundary and even on just one edge of M(0). If f14 in Figure 8 shrinks to a point, the
first commodity is basic and commodities 2 and 3 non-basic. Non-basics can therefore be
considered as limit cases of our analysis, as will be further exemplified in a Note at the
end of this section. Non-basics do not affect our conclusions substantially, in particular
with regard to the following Theorem 2.

The simplest estimate of the potential of reswitching is obtained if one includes not
only M? and M??, but also the top of M(0) and the convex hull of all points of reswitching,
including those that are not semi-positive (‘pseudo switch-points’) and that arise because
of transgressions as in Figure 7, left side. This set is now called M???. As in the proof of
Theorem 1, f̄i is the vector going from the tip of M(0) up to the maximum f̄i of fi,n+1, as
shown in the schematic Figure 9. Obviously, f̄i = γifi with γi < 1, if vertex i is empty and
γi > 1, if there is a transgression. The intermediate case γi = 1 is taken up in Theorem 3.

Theorem 2. Suppose a system fulfils assumption (A) of Theorem 1, and suppose m is the
number of empty vertices and n−m that of transgressions, with m/n > 1/2. Suppose the
vertices i = 1, . . . , n can be grouped into n −m not overlapping groups ij1, . . . ijk; k ≥ 1;
j = m + 1, . . . , n;

∑n
j=m+1 ijk = m with γij1 · . . . · γijk < 1/γj. Then the probability that

such systems exhibit reswitching will tend to zero as n→∞.

The Proof is obvious: one gets µ(M???)/µ(M(0)) → 0, and µ(M?) < µ(M???). The
essential assumption is that the γi can be grouped so that for each j with γj > 1; j =
m+ 1, . . . , n; there is at least one γij1 , . . . , γijk such that γij1 · . . . · γijk · γj < 1: the edges
with f̄i < fi; i = 1, . . . ,m; compensate for the edges with f̄j > fj; j = m+1, . . . , n. This is
plausible if m >> n−m. The estimate overstates the probability, because M??? includes
the top and, more importantly, n−m volumina of the ‘tails’ with not semi-positive points
of the transgression, and moreover, points due to the formation of the convex hulls. But
the calculation of the volume of M??? is easy, following the method used in the proof of
Theorem 1.

The basis B of the n-simplex M(0) consists of an (n− 1)-simplex formed from the n
tips of the vectors f1, . . . , fn. We also can define a (n− 1)-simplex S from the tips of the
vectors f̄1, . . . , f̄m, fm+1, . . . , fn, connecting the maxima of the fi,n+1, where the vertices
are empty, with the vertices fj, where there are transgressions, schematically represented
in Figure 10. Simplex S divides M?; a domain D1 between S, B and the lower boundary
of M? (represented schematically as flat in the diagram, though it is not) and a domain
D2 between S and the lower boundary of M?, where M? is concave and contains (a1, l1)
– now supposed to be positive – as the star-point. Define M??? this time as the convex
hull of the tip of M(0) and S.

Theorem 3. If µ(D1) ≤ µ(D2), µ(M???)/µ(M(0)) −−−→
n→∞

0 and the probability of reswitch-

ing tends to zero.

The Proof is again obvious; we have

µ(M???)/µ(M(0)) = γ1 · . . . · γm.
Instead of compensating for γm+1 > 1, . . . , γn > 1 as in the previous theorem, we have
shifted part of M?, as Figure 10 illustrates.
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Pn+1

fi

f̄j

f̄i

fi,n+1

fj

f?i

FE

M?

M??

M???

f+j,n+1

fj,n+1

Figure 9: M??? ⊇M?? ⊇M? is the convex hull of the tip of M(0), Pn+1, of the fi,n+1 and
of the fj,n+1 and includes points of reswitching that are not semi-positive, because there
is a transgression at each vertex j, j = m + 1, . . . , n. The transgression drawn is weak,
but the same result and almost the same diagram result, if it is strong. The reswitching
body M? contains only reswitch-points that are non-negative, hence it excludes the tails
extending from the basis B of M(0) to the f̄j. But the existence of the tails implies
that part of the basis B between F and fj belongs to M?, hence also to the convex hull
M?? of M?. The basis B is spanned by f1, . . . , fn. The borders E and F result from
the intersections of the simplices spanned by f̄1, . . . , f̄n and f̄?1 , . . . , f̄

?
m, f̄m+1, . . . , f̄n with B

respectively, where f̄?i stand for the minima of fi,n+1; i = 1, . . . ,m.

The essential condition of Theorem 3, µ(D1) ≤ µ(D2), will be fulfilled only if m/n
is close to one; moreover, we must have (a1, l1) > 0. So this is only a possibility. A
more general construction results, if we let S shift towards the bottom so that the space
corresponding to D2 in Figure 10 expands and that corresponding to D1 contracts. The
vertices of S on hi,n+1 are represented by vectors f̃i that originate in Pn+1 and fulfil
‖f̄i‖ ≤ ‖f̃i‖ ≤ ‖fi‖. If continuous paths are prescribed for the movement of the f̃i from f̄i
to fi – there is some freedom in choosing them – intermediate values f̃?i will be found, for
which what is now D̃1 in Figure 11 is just accommodated in D̃2 (if such an expansion is at
all necessary, because it may be, as in Figure 10, that the mass ofD1 can be accommodated
in D2). The schematic diagram looks as if this could easily be done, because the area of
D1 (D̃1) in Figure 10 (11) looks smaller than the area of D2 (D̃2), but these areas stand
for partial volumina of simplices of dimension n, and there is more volume in the bottom
near the basis than above it. Hence it is possible that all f̃i will tend to fi, and if they
do, the probability of reswitching is not zero, but one! Whether systems (A, l) exist that
generate this kind of behaviour is not known. I doubt it, I certainly have never seen one,
but, until a proof of impossibility is found, the formal possibility has to be taken into
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D1

Figure 10: Simplex S connects the maxima f̄i of the fi,n+1 of the empty vertices with the
vertices fj with transgressions. The part of M? between S and basis B is transferred into
the cavity between concave M? and S.

account.

Pn+1

f i

f̄j

f̄i

fi,n+1

fj

M?

B

fj,n+1

S

D̃2

D̃1

f̃i, f̃
?
i

Figure 11: The volume D̃1 of M? enclosed between S and B is equal to the volume of
M(0) enclosed between S and the lower boundary of M?, thanks to the choice of the
vertices f̃ ?i of S.
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Theorem 4. If, as n tends to infinity, a number n? of f̃?i with ‖f̃?i ‖ < ‖fi‖ can be found,
which tends to infinity with n, the probability of reswitching tends to zero.

Proof. If M??? is defined as the convex hull of Pn+1 and S in M(0), the conclusion follows
as in the proof of Theorem 3. By the same consideration we get the

Corollary. If all but a finite number of f̃ ?i , say i = 1, . . . , k, tend to fi, the probability of
reswitching will tend to γ1 · . . . · γk, where γi = ‖f̃?i ‖/‖fi‖.

Before discussing this result, we complement it with Theorem 5, for the proof of which
we use another method to estimate the volume of M? relative to M(0): we use cones.
Figure 12 shows that, after some rearrangement of the masses, we can represent the
volume of M? as contained in the volumes of two cones. Figure 8 illustrates how M??

extends to the basis of M(0), if transgressions are involved. In order to be able to use
the part of M? pertaining to the basis as a measure of the extent of the transgressions,
we make the simplifying assumption that the boundaries of M? can be represented by
two (n − 1)-simplices (hence the boundaries are not only drawn, but actually assumed
as flat), which connect the minima of fi,n+1 with the maxima of fj,n+1, and vice versa
the maxima of fi,n+1 with the minima of fj,n+1, so that each of the two simplices, d1
and d2, are spanned by n points (see Figure 12), and M? is now assumed to lie between
them. The basis B, spanned by f1, . . . , fn, will be bisected by d1, which runs across B; the
separating set b = d1 ∩ B is of dimension n− 2. Let d1 rotate around b until it contains
the tip of M(0), Pn+1, and denote this rotated simplex by d. This d then bisects not only
B, into B1 with vertices f1, . . . , fm and B2 with vertices fm+1, . . . , fn, but the entire M(0).
Consider a hyperplane H of dimension n− 1 parallel to and above B at distance δ to B.
It cuts f1, . . . , fm and d; this domain of it is denoted by B′1. B

′
1 will cut d1 and, if δ is large

enough, also d2. Choose δ so that the volume V1 below B′1 and between the boundary of
M(0) and d2 on the one hand and the volume V2 below B′1 and between d1 and d on the
other, taken together, are equal to the volume V3 above B′1 and below d1 and d2. Since
V3 = V1 + V2, the two cones, the first formed by B2 and Pn+1, bordered by d and the
sides between fm+1, . . . , fn, of height h = p̂1(0), and the second formed by B′1 and Pn+1,
bordered by d and the sides between f1, . . . , fm, of height h− δ, will together contain the
mass of M? and the empty top of M(0). Note that δ > 0, because V2 has only a set of
dimension n − 2 in common with B; this is the main difference in comparison with the
construction of Theorem 4 and Figure 11.

Now µ(B′1)/µ(B) tends to zero with n → ∞, because µ(B′1)/µ(B1) tends to zero.
This follows, with β = (h − δ)/h, from µ(B′1) = βn−1µ(B1) as in the proof of Theorem
1. The volume of a cone of dimension n with basis B? and height h? is equal to the
(n − 1)-dimensional measure µ(B?), multiplied by 1/(n − 1)! and by h?. M(0) also is
a cone. Hence the probability of reswitching is under the stated assumptions smaller or
equal to

h− δ
(n− 1)!

µ(B′1) +
h

(n− 1)!
µ(B2)

h

(n− 1)!
[µ(B1) + µ(B2)]

=

(1− δ

h
)
µ(B′1)

µ(B1)
+
µ(B2)

µ(B1)

1 +
µ(B2)

µ(B1)

−−−→
n→∞

µ(B2)

µ(B)
,
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since µ(B′1)/µ(B) −−−→
n→∞

0 and δ > 0. The volume of the top also tends to zero. Therefore

we can state:

Theorem 5. Given the simplifying assumptions in the text, summarized in the legend to
Figure 12, the probability of reswitching tends to µ(B2)/µ(B).

Pn+1

fi

f̄j

f̄i

fi,n+1

fj

V1

V3

V2

B1

fj,n+1

d

d1 d2

d1
d2

b

B′
1

B2

δ

h

Figure 12: The assumptions are as for Theorem 1, with the additional assumption that
the boundaries of M? are flat, the xi along fi,n+1; i = 1, . . . ,m; are monotonically falling
or do at any rate not rise beyond zi(0) and the transgressions are weak. B2 borders M?

on basis B = B1∪B2. B
′
1, parallel to B1, is chosen so that the volumina V1 +V2 equal V3.

Our assumptions for Theorem 5 are more restrictive than those for Theorem 4 in par-
ticular, because M? is here assumed to be bordered by flat surfaces. But we now used the
star-shaped character of the reswitching body. Theorem 5 and the Corollary to Theorem
4 confirm that the probability of reswitching goes to zero for n→∞ only under assump-
tions, as had been emphasized in Schefold (2016), but they are now more detailed and
explicit. The probability γ1 · . . . · γk of the Corollary and the corresponding expression
µ(B2)/µ(B) of Theorem 5 will be small, and will tend to zero, if the number of transgres-
sions diminishes relatively as n increases or if m/n increases. I regard this as plausible
because the random character of technological systems becomes visible only if they are
large. The Goldberg-Neumann theorem points in this direction, but the debate about
this matter is not closed. Meanwhile, we have empirical evidence that transgressions are,
relatively, not frequent. Taking this as an assumption, we have explained why reswitching
is rare.
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Note: On non-basics and new commodities
As indicated in the commentary to Theorem 2, non-basics can be treated as limit cases
with (a1, l1) on the boundary of M(0). There is only little interest in the matter in this
paper, since we are here concerned with the foundations of capital theory, and capital
goods are typically basic. The fact that non-basics played a significant role in the debate,
explicitly in Sraffa, implicitly before him (e.g. in the exchanges between Irving Fisher and
Eugen von Böhm-Bawerk) has to be explained by the limitations of the mathematical
techniques available to the authors and by the intuitive appeal that the discussion of
non-basics does indeed have, in particular for beginners.

We only consider the simplest case: there is one basic commodity and the non-basics
are consumption goods. Hence (a1, l1) is on h1,n+1 and f14 in Figure 8 shrinks to a point
(assuming n = 3). One finds in this case, with

A =

 a11 0 0
a21 0 0
a31 0 0

 , l =

 l1
l2
l3

 ,

p̂1(r) =
l1

1− (1 + r)a11
, p̂2(r) = l2 +

(1 + r)a21l1
1− (1 + r)a11

, p̂3(r) = l3 +
(1 + r)a31l1

1− (1 + r)a11
,

z1(r) =
1

1 + r
, zi(r) =

l1
(1 + r)[li + (1 + r)(ai1l1 − a11li)]

; i = 2, 3; z4 = p̂1(r).

The characteristic equation has two eigenvalues equal to zero, and zero is a double root
of the characteristic equation. The system is therefore not regular; Bródy’s hypothesis is
fulfilled. Obviously a11 = 1/(1 +R), hence standard prices pi = (R− r)p̂i/R are linear

p1 =
1 +R

R
l1, pi =

R− r
R

li +
1 +R

R
(1 + r)ai1l1; i = 2, 3;

but zi(r) is not necessarily monotonically falling. It will fall, if ai1l1 > a11li or ai1/li >
a11/l1, that is, if sector one is less capital-intensive, while transgressions become possible
in the converse case, though with further restrictions on the range of r, which we cannot
discuss here fore reasons of space. Of course, one gets, using (10), that x1(r) = a11. The
star-equation, (ix) of the Lemma, with a12 = a13 = 0, reduces to

a11/z1(r) + l1/zn+1(r) = 1,

showing the opposed movements of z1 and zn+1. These findings confirm that systems with
non-basics can, with regard to the questions discussed in this paper, be viewed as limit
cases and are useful for the intuition.

Non-basics can also be used to construct a counterexample to the theorems, which we
have proved, because it violates the assumption that the number of transgressions grows
less with n than the number of empty vertices. It is so intuitive that it suffices to describe
it in verbal terms. The reader will be able to represent it formally, if that seems necessary.
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The idea is to add to a given basic system (the corn model is a possibility) pairs of non-
basics of the type of Sraffa’s wine and oak-chest example. One year old wine is produced
by means of labour alone and becomes successively, with a zero labour input, two years
old, three years old and, eventually, eight years old wine, which is the consumption good.
Similarly for the oak-chest, where a small amount of labour is used to plant the tree.
The new tree becomes, with zero labour inputs, successively older until it is made into
the chest by means of a considerable labour input. Such an example was first used by
Irving Fisher, long before Sraffa, and by Samuelson after him. With appropriate values
for the positive labour inputs, one gets reswitching, in that wine and oak chest will be
of equal price at two different rates of profit over a certain range, and one can express
this price in terms of the standard commodity of the basics, if one wishes, as Sraffa does,
although wine and oak-chest are not inputs to the production of other commodities; they
are consumption goods (the model is Austrian). An ever-increasing number of pairs of
such non-basics can be added to the given and unvariable basic system. What this means
for the probability of reswitching is not clear before one defines the ranges of parameter
values within the set of potential techniques. Various definitions can be thought of.
Several authors have come to the conclusion that the probability for reswitching is small,
but positive in Austrian models (see Section 1) – the three positive labour inputs to the
production of wine and oak-chest must vary in restricted domains to produce the desired
effect – but it becomes clear that the construction of reswitching examples is easy with
non-basics. Of course, several of the assumptions used in Section 6 do not hold, so we
get to a different conclusion. If the probability for reswitching is ε for a given pair and if
we have m such pairs with the same ranges for the parameter values, the probability that
reswitching occurs at least once is 1− (1− ε)m and tends to certainty with m→∞, even
if ε is small.4 The construction is illustrative but the model with the indefinitely large
number of pairs is special; it does not take anything away from what we found in this
paper, since capital goods are essentially basics and the construction cannot be extended
to basic commodities without modifications – see Section 7.

Using this rudimentary theory of non-basics, we can discuss the introduction of new
goods in the system. Petri (2011) claimed that the probability of reswitching increases
substantially, if a switch of technique is associated with the production and use of new
goods, but he refers to the Samuelson or corn-tractor model, which we criticised in Section
1, because it does not show how one gets from the system using horses to the system with
tractors.

4We can vary Sraffa’s example to create a case with ε = 1. The oak-chest is produced with one unit
of labour 25 years ago and 19 units of labour in the present. The wine is produced by λ units of labour.
In Sraffa’s case, λ = 20, and the price of the oak-chest in labour commanded is p̂c = 19 + (1 + r)25 and
that of wine is p̂w = 20(1 + r)8. We have p̂w = p̂c for r = 0 and r ≈ 17%, hence we would have a
kind of reswitching, if these two methods produced the same commodity. We estimate the probability
of this reswitching by assuming that one method, here the oak-chest method, is given, and the possible
techniques – here the wine technique – have a switch in common with the oak-chest technique. From
p̂c = 19 + (1 + r)25 = p̂w = λ(1 + r)8, one gets λ = (19 + (1 + r)25)/(1 + r)8. If one plots this curve,
one finds that it is in the relevant positive range similar to a parabola with its minimum of λ ≈ 13.86 at
r ≈ 11%. Hence, if the labour input is below 13.86, there is no solution (but such a labour input would
be economically admissible), while, if λ > 13.86, there will be two solutions. Hence, if there is one switch,
such as for λ = 20, there is also another, and reswitching is certain and ε = 1.
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The emergence or disappearance of commodities in the system has been discussed in
the context of joint production. If wages are lowered, it may pay to use an old lorry of
age T one year longer. A new commodity appears in the system in the form of a lorry of
age T + 1 (previously, the lorry had been discarded), together with the process of using
it, producing the transport of, say, wheat. This is the application of a broader principle.
The single production of commodities is, as a rule, associated with the production of by-
products, such as wastes, which fetch no price because they are not used. As soon as a use
for one of the wastes has been discovered, it becomes a commodity and enters the system
(Schefold 1997, pp. 197-239). New commodities can thus be discussed within the Sraffa
framework, but we want here to avoid joint production, because of the complications this
would involve.

Another way to introduce new goods is to assume that they emerge as non-basics,
because their use is first tested only by some firms; the wage curve, say w1, then results
from the prices of basics. The good, e.g. a loom, becomes a truly basic commodity,
when it is generally used in the textile industry. We then get a new system, in which the
process producing the loom is retained, and the loom is used in the textile industry with
a somewhat changed composition of inputs.

We thus have an introduction of the loom in two steps. First, there is the old system
without the loom; the wage curve is denoted by w0. Then, part of the surplus is used to
produce the loom (progress results from new combinations, as Schumpeter said), and we
have a new wage curve, which we denote by w1. Then the loom is generally used and we
get wage curve w2 in terms of the same commodities that represented the numéraire in
w1.

To analyse the possibilities for isolated reswitching, we first compare w0 and w1, but
these wage curves are identical. Then we compare w1 and w2. Since we assume that the
loom is produced by part of the surplus (the new combination), there is a non-basic, but
we do not have an Austrian model. We therefore remain within the framework which has
been developed in the paper. Contrary to Petri (2011), we need not change our conclusion
because of new goods.5 The systems represented by w0 and w1 differ only in a non-basic
process, which does not affect the wage curve. The systems represented by w1 and w2

differ only in one process, and the probability for an isolated reswitch can be analysed.

7 The probability of reverse capital deepening and

final considerations

An important application of Theorems 1 – 5 concerns the critique of Samuelson’s pro-
duction function on the basis not of reswitching, but of estimating the number of wage
curves on the envelope of the wage curves of many techniques. It is asserted in Kerst-
ing and Schefold (2021) that the number of wage curves on the envelope, that is, the
number of techniques that are efficient and may come into use in consequence of shifts
in distribution, is much smaller than Samuelson’s construction suggested. The proof uses
assumptions about probability distributions of maximum rates of profit and maximum

5See also Petri (2021, 2022) and Schefold (2022b, 2022c).

40



wage rates. This means a new turn in the critique of capital. The efficient techniques are
few so that there is not much room for substitution (Schefold 2021a). According to the
result that can most easily be reached, mentioned in Section 1, the number of efficient
techniques to be expected is at most ln s, if s is the number of available techniques. The
proof of this formula in Schefold (2013b) uses the assumption that wage curves are straight
lines, because that is what Samuelson assumed. However, the crucial assumption is not
linearity or quasi-linearity, but that the wage curves that reach the envelope through a
first switch do not exhibit a second (no double switching, see Kersting and Schefold (2021,
p. 523)). Now we have proved that second switches are unlikely. By implication, we have
proved – provided the corresponding randomness assumptions hold – that the expected
number of wage curves on the envelope is at most ln s, even if wage curves are not straight.
It is ironic that the new turn in capital theory profits from the absence of reswitching,
while reswitching and reverse capital deepening had been the main and most conspicuous
arguments in the first debate.

We now turn to the probability of reverse capital deepening. To define the probability
of isolated reswitching, we started from a given system – one method for each commodity,
and one alternative method in the first process. An admissible alternative method could
in principle be any semi-positive vector (a0, l0), superior, inferior or equiprofitable, relative
to (a1, l1), but the set of possible techniques is that of the equiprofitable techniques at one
given rate of profit r1 and the set of favourable techniques is the subset of the possible
techniques which are equiprofitable at some other rate of profit r2. The set of admissible
alternatives is the semi-positive quadrant Rn+1

+ − {0} of dimension n + 1, the possible
methods are in the n-dimensional simplex M(r1), the favourable methods are M?(r1), the
union of the intersections of M(r1) with M(r2), 0 ≤ r2 ≤ R, r2 6= r1. M

? is of dimension
n−1, if the labour theory of value holds, but a star-shaped region in M(r1), if the system
is regular so that relative prices change with the rate of profit.

The reader, who has patiently read the paper up to this last section, will have un-
derstood this, but perhaps without noticing the following ambiguity in this definition: If
there are two techniques with wage curves w1 and w2 that intersect twice, so that we
have reswitching (which is, in the absence of other techniques, at the same time a case of
isolated reswitching, of systemic reswitching and of reverse capital deepening) and if we
now ask how probable this constellation is, we find that we get different results depending
on which system is regarded as the first and which switch is regarded as given. The am-
biguity did not come up earlier, because of the way in which we posed the question: We
asked for the probability ex ante, if a new method was introduced and produced a switch
at some r1 – would there result another switch at r2, with what probability? Ex post, one
may not be interested any more in the sequence of the events; then, one will get different
results according to the sequence one assumes. The difference will usually be small. Its
existence is not really a surprise, since the probability of isolated reswitching is defined
relative to a given technique. Of special interest will therefore be those results, which
do not depend on the assumption of the sequence, in particular that the probability of
isolated reswitching tends to zero with the number of sectors.

Reverse capital deepening occurs on the envelope of the wage curves with large systems
and many techniques. It will now matter how many switch-points and wage curves there
are on the envelope according to the results of Kersting and Schefold (2021).
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We consider any switch-point on the envelope engendered by two wage curves, denoted
by w1 and w2, and we assume that reverse capital deepening is associated with it. Since
we are on the envelope, the two techniques differ only in one method of production in
one sector, say the first. We know or choose the ‘prior’ method (a1, l1), the ‘secondary’
is (a0, l0). Either this switch-point in r1 is itself a case of reverse capital deepening (case
A) or w1 and w2 intersect elsewhere at some r2 and reverse capital deepening occurs at
r2 (case B).

Consider case B first. Since there is no capital reversal at r1, we must have r2 > r1 and
the switch at r2 is on the envelope (otherwise it is no capital reversal). Disregarding further
switches, because they would be unlikely, both switches are therefore on the envelope; case
B implies that we have systemic reswitching. But it is unlikely that neither switch-point
is dominated, if there are many wage curves on the envelope, and so we exclude case B,
as being of a low probability which may be disregarded.

This may not be said of case A, since the other switch-point must be at some r2 < r1
and may be (it probably will be) below the envelope. If we abstract from all other
techniques except those used for w1 and w2, we then have, by the construction, isolated
reswitching with a positive probability that tends to zero with an increasing number of
sectors. This probability will also (and strongly) depend on r1, for the switch-point r2
must be between zero and r1, and there will be the more room for such a switch-point,
the closer r1 is to R. This effect is very visible in the results of the empirical work
by D’Ippolito (1989, p. 196). So we have countervailing tendencies. The probability
that a switch-point represents reverse capital deepening is smaller than that of isolated
reswitching, because we exclude case B, but it approximates that of isolated reswitching
as the switch-point gets close to the maximum rate of profit of the first technique. It
diminishes with an increasing number of sectors. Nonetheless, the probability that some
switch-points on the envelope of a system with many techniques exhibit reverse capital
deepening obviously increases with the number of switch-points. What prevails?

Our heuristic methods do not allow to derive a definite answer. The complication in-
creases because the number of switch-points and the number of sectors may be connected.
I propose two illustrative outcomes, tentatively using audacious assumptions.

(i) The probability πn that any switch in an n-sector model with many techniques is
a case of reverse capital deepening can only be understood as a rough average for
classes of systems with not too many transgressions. We have convinced ourselves
in this section that πn must be smaller than the probability for isolated reswitching.
An exact general rule can hardly exist, but we suppose πn = α

n
, where α would be of

the order of magnitude of 0.3 for the following reasons: If n = 30, the results of Han
and Schefold (2006) and of Zambelli (2018), as interpreted by Kalb (2022), indicate
a πn for systems with about 30 sectors of about 1%. That implies α = 0.3. If the
formula is applied to a three sector model, one obtains π3 = 0.3/3 = 10%, which is
high, but not altogether implausible. We denote the number of switch-points by ω
and assume ω = ln s, according to Schefold (2013b), where s is the total number of
techniques. Suppose that s is given by the methods employed in m countries with
n industries, hence s = mn. We keep m constant as n increases. The probability
π̂ that at least one case of reverse capital deepening appears then is, with m = 10
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and lnm ≈ 2.3,

π̂ = 1− (1− πn)ω = 1−
(

1− 0.3

n

)n lnm

−−−→
n→∞

1− e−0.3·2.3 ≈ 1− e−0.69 ≈ 0.5.

That the probability of finding at least one case of reverse capital deepening should
be so low where there are so many techniques is surprising but a similar consideration
confirms the result.6 Further research is required to test the robustness of the
result, more theory is needed to improve on the assumptions of πn as an average,
inversely proportional to n. The number 0.5 for π̂ is therefore only a rough estimate,
but it conveys an important message: the probability of reverse capital deepening
occurring in a large system is less than one, despite a tendentially infinite number
of switch-points. Most people would probably expect that this probability π̂ tends
to one as the number of switch-points ω tends to infinity. Two reasons are jointly
needed to explain why the opposite happens: clearly, πn must tend to zero, according
to the main result of the paper: the probability of isolated reswitching tends to zero.
For otherwise πn → π̄, 0 < π̄ < 1, and (1− π̄)ω −−−→

ω→∞
0 and π̂ → 1. And it matters

how the number of switch-points goes to infinity with the number of sectors. It
is likely that the number of techniques increases exponentially with n. We used
the assumptions mn – in each of n industries, one of the m methods employed
in m countries can be used. Suppose that only a fraction ζ, 0 < ζ << 1, of
these techniques matters economically, because it is transferable to the country
under consideration. Suppose now that, contrary to Kersting and Schefold (2021),
each additional transferable technique engenders one additional switch-point as in
Samuelson’s surrogate production function, if each additional transferable linear
wage curve gets on the envelope, because the maximum rates of profit are in the
inverse order of the maximum wage rates. Then ω = ζmn and

π̂ = lim
n→∞

1−
(

1− α

n

)ζ(mn)

= 1− lim
n→∞

(
1− α

n

)n(ζ/n)(mn)

= 1− lim
n→∞

(
e−αζ

)(mn)/n
.

Since 0 < αζ, e−αζ < 1 and since (mn)/n −−−→
n→∞

∞ with m > 1, π̂ −−−→
n→∞

1. Reverse

capital deepening becomes certain despite πn → 0, but only if the number of switch-
points increases exponentially with n. The density of the switch-points with RCD,
ψ/ω = πn, would tend to zero, however.

In other words: the tendency of the probability of isolated reswitching to go to
zero implies that, in large systems, not even one case of reverse capital deepening
would be certain to be observed, as long as the number of switch-points increases
not exponentially with the number of sectors, but only logarithmically – or even
less fast.

6There were 496 envelopes in the empirical investigation by Han and Schefold (2006), each representing
the envelope resulting from the combinations of 33 methods in n = 33 industries in two countries, so that
there were 233 techniques underlying each envelope. Assuming uniform distributions in order to apply
Kersting’s theorem, we now have ω = 2

3 ln s. The expected number of cases of reverse capital deepening
ψ then is ψ = πnω = 0.3

33 · 23 ln s = 0.3 · 23 ln 2 = 0.14. We get for the expected number of cases of RCD on
all envelopes ψ̄: ψ̄ = 496ψ ≈ 69. Han and Schefold (2006) found 60 cases of RCD on 4389 switch-points
on all envelopes taken together.
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ii) In fact, this is confirmed, if further results from Kersting and Schefold (2021) are
taken into account. Then, the number of switch-points to be expected in the relevant
range of the envelope remains finite. In the case of uniform distributions of maximum
wage rates and uniform rates of profit, there may not even be two switch-points in
the relevant range of the rate of profit (Kersting’s theorem). If the two distributions
of maximum wage rates and maximum rates of profit are normal with a moderate
correlation, numerical experiments with large numbers of techniques also resulted
in a small number of wage curves appearing on the envelope. The individual wage
curves were assumed as linear, but they could also be interpreted as short cuts of
non-linear wage curves. The conclusion in the paper was that there is not much
room for substitution between capital and labour. The conclusion which follows
here is that there is not much room for reswitching and reverse capital deepening
either.

To summarise, we get a complementarity: Either the number of switch-points on the
envelope increases less than exponentially with the number of sectors. Then, it is not
certain that even one case of reverse capital deepening exists in a large system, but the
possibilities of substitution are limited. Or the number of switch-points increases expo-
nentially. This seems to be fundamental for Samuelson’s surrogate production function.
Then, reverse capital deepening is almost certain to exist.7 Further research will have to
show how this conclusion needs to be modified, if the analysis is improved and if, in par-
ticular, the simplifying assumption of an inverse proportionality between the probability
for isolated reswitching and the number of sectors is overcome.

7The complementarity does not imply that there is a strict causal link between zero substitution and
the absence of reswitching. It is formally possible – though unlikely – that there are many near-linear
wage curves without reverse capital deepening (the Samuelson case). Such a constellation is, as it were,
doubly improbable, because it is unlikely that there are many wage curves on the envelope in the relevant
range (as is shown in Kersting and Schefold 2021) and it is improbable (though possible) that there is
then no RCD at all. Conversely, it is possible, though improbable, that there are few wage curves on the
envelope and yet there is reswitching. The complementarity thesis therefore only states what seems to
be a rule, capable of exceptions, given the present state of our knowledge.
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