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Abstract 

In recent years there is a revival of political economy, and discussions are about the near 

linearities of price rate of profit trajectories. In this article, we argue that economy’s input-

output data are of low effective dimensionality, meaning that there is overfitting in that it 

takes only a few eigenvalues and respected eigenvectors for an adequate representation 

of the movement of prices, and that some of the fundamental features of the economy 

may be tracked down with the use of a low dimensional system. 
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1. Introduction 

In recent years, the research has repeatedly shown that the shape of the price rate of profit 

trajectories and the wage rate of profit curves are near linear. Curved trajectories do exist, 

but they are relatively few, and even fewer are the trajectories with a single extremum, 

and we do not exclude the possibility of two extrema in the relevant region. The 

explanations offered for these linearities were based on the characteristic distribution of 

the eigenvalues of the system matrices. More specifically, in the usual dimensions of 

input-output matrices, the dominant eigenvalue is significantly higher (by 40% to 60%) 

than the second, followed by the third and a few more, their exact number depending on 

the size of the matrices. The remainder eigenvalues form a long tail and paint an 

exponentially falling distribution. 

Three hypotheses have been put forward to explain this distribution of eigenvalues and 

the associated with this linearities:  

1. The randomly distributed input-output coefficients (Bródy 1997; Schefold 2020).  
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2. The closeness of vertically integrated compositions of capital (VICC) between 

sectors (Shaikh 2016).  

3. The low effective-rank or effective dimensionality of the utilized matrices shapes 

the exponential fall in their eigenvalues, which in turn determines the near-linear 

features of PRP and WRP curves (Mariolis and Tsoulfidis 2018, Tsoulfidis 2021 

and 2022). 

The purpose of this study is to examine the extent to which these three hypotheses are 

consistent with the available evidence (for more see Ferrer-Hernández and Torres-

González 2022; Torres-González 2022) and proceed with the less researched third 

hypothesis by operationalizing a new metric of effective rank based on Shannon entropy. 

The remainder of the article is structured as follows: section 2 examines the realism of 

these competing explanations and introduces the concept of effective rank (and 

dimensionality) to identify the number of eigen- or singular-values that condition the 

behavior of the entire economic system. Section 3 illustrates the theoretical discussion by 

utilizing actual input-output data of the US economy of 15 sectors for (the most recent) 

year 2020, so the reader may have a better grasp of the usefulness and reliability of the 

approach. The fourth section concludes with the idea that there is overfitting of data and 

that fewer data and dimensions compressed in two or three sectors would be adequate to 

convey the essential behavioral features of the system. 

2. Effective rank and dimensionality 

Our research has shown that the first of the above hypotheses does not corroborate with 

the available evidence. The reason is that although a random or rather a near random 

matrix gives rise to an exponentially falling distribution of eigenvalues. However, it does 

follow that every skew distribution of eigen- or singular-values comes from a random 

matrix. Our empirical analysis in Tsoulfidis (2021 and 2022) has shown that the random 

matrix hypothesis does not pass the statistical tests. First, because the actual output 

vector, 𝐱 of the input-output coefficient matrix is quite different from the standard or 

right-hand-side (r.h.s.) output vector, 𝐬 derived either directly from matrix 𝐀 or by its 

multiplication by the Leontief inverse, 𝐇 = 𝐀[𝐈 − 𝐀]−1. The idea is that if the two vectors 

are no different to each other, it follows that the price – rate of profit trajectories and the 

wage – rate of profit curves will be linear. Second, the employment coefficients vector 𝐥 

also differs significantly from the left-hand-side (l.h.s.) unique positive eigen vector, 𝛑 of 

the matrix 𝐀 or of 𝐇. The idea is that if differences between these two vectors are minimal, 

it follows that the economy is described by the case of an equal composition of capital 

between sectors. From the above, it follows that in order for the randomness hypothesis 

to hold, the vectors 𝐝1 = 𝐱 − 𝐬 and 𝐝2 = 𝐥 − 𝛑 must have their correlation coefficient 

equal to zero and zero must be their respective covariance coefficient. 

Our findings in testing the USA input-output tables of the years 2007 and 2014 of 

dimensions 54 industries (Timmer et al. 2015) and of the years 2012 of 70 industries 
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(www.bea.gov) suggest that the correlation between 𝐝1 and 𝐝2 is statistically significant, 

and therefore the randomness hypothesis is not consistent with the data in spite of the fact 

that the covariance of the two vectors was found zero1. The zero covariance does not help, 

because of its dependence on the normalization condition. However, the same is not true 

with the correlation coefficient, and if the correlation coefficient is positive and 

statistically significant, the randomness hypothesis does not hold on purely statistical 

reasoning. Besides, there are other more intuitive and systematic reasons related to the 

nature of technological change and the associated input-output coefficients, whose value 

is declining over time (Carter 1970 and Tsoulfidis and Tsaliki 2019). The persistence of 

the ranking of industries according to backward, forward and their total linkages is 

another reason that renders the randomness hypothesis not coming to terms with the 

empirical evidence (Tsoulfidis and Athanasiadis 2022). 

The exponentially decreasing distribution of eigenvalues is also consistent with the 

remaining two hypotheses from which the closeness of VICCs to the economy-wide 

average is quite appealing to researchers. The idea is that if the VICCs are too close to 

each other, except for just a few, it follows that the maximal eigenvalue (along with a few 

others) will be crucial for the behavior of the entire economy lending support to the 

conceptualization of one commodity world (OCW) economies. The remainder of 

eigenvalues will be flocking together at negligibly small values, whose effect will not be 

felt in the economy. The trouble with this hypothesis is that the estimation of VICCs 

depends on equilibrium prices for which we need the VICCs. In short, there is cyclicality, 

which can be hardly overcome unless the estimations are carried out in terms of labor 

values or market prices or simply by stipulating that all three kinds of prices end up in 

quite close estimates. However, the question becomes, how can one decide between too 

different or too similar VICCs? There is no such metric, and the notion of the VICC, 

although intuitively in the right direction, nonetheless requires further qualifications. 

Thus, it becomes imperative to invoke (if not contrive) a metric that is independent of 

prices. 

Consequently, we are left with the third in line hypothesis which we need to introduce 

first and then discuss its explanatory content. Roy and Vetterli (2007) are from the first 

that proposed a metric for the estimation of the effective rank of a matrix2. In order to 

find the required number of terms to be included in the representation, they employ the 

Shannon (1948) entropy index or the spectral entropy defined as 

𝑆 = − ∑ 𝜎𝑖

𝑛

𝑖

log 𝜎𝑖 
(1) 

where 𝜎𝑖′s stand for the normalized singular values of the matrix, whose effective rank 

we want to estimate, with i=1, 2, …, n. Thus, 𝜎𝑖 = 𝑠𝑖/ ∑ 𝑠𝑖
𝑛
𝑖  where 𝑠𝑖 = 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥

𝑠𝑛 ≥ 0 are the singular values.  

 
1 All four vectors are normalized in the unit simplex, that is, the sum of their elements is equal to one. 
2 Their metric is inspired by the work of Campbell (1960).  
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By stipulating that 0log(0) = 0, the effective rank (𝑒𝑟𝑎𝑛𝑘) of our matrix can be 

written 

𝑒𝑟𝑎𝑛𝑘(𝐇𝑅) = 𝑒𝑆 (2) 

It follows that the more similar the singular values, the higher the entropy, whose 

maximum is attained when 𝜎𝑖 = 𝑛−1 for all 𝑖 = 1, 2, … , 𝑛. In the hypothetical case that 

all the 𝜎𝑖′s are of the same value, the entropy will be −log 𝑛−1. The exponential of this 

term gives an effective rank equal to one whereas the maximal nominal rank might be 𝑛, 

that is, the number of linearly independent rows or columns. In the case of a random 

matrix its effective rank will be 1 and the nominal n.  

However, the following statement by Roy and Vetterli (2007): “In the sequel, all 

logarithms are to the base e and we adopt the convention that 0log0 =  0”, unfortunately, 

made the present author utilize natural logarithms and the derived results were not of any 

help at all. But as they say “every cloud has a silver lining”, which in this case led the 

research to indirect estimates of the effective rank through an eigendecomposition of the 

matrix 𝐇𝑅 = 𝐀[𝐈 − 𝐀]−𝟏𝑅, where 𝑅 the reciprocal of the maximal eigenvalue of 𝐇. The 

matrix 𝐇𝑅 can be restated by an eigen or spectral decomposition (Meyer 2001, pp. 243-

4, Mariolis and Tsoulfidis 2018). That is, the matrix 𝐇𝑅 is cast in matrix terms formed 

from its eigenvalues and eigenvectors, such that the sum of these terms gives the original 

matrix. Thus, we may write 

𝐇𝑅 = (𝐲1𝐱′
1)−1𝐱′1𝐲1 + 𝜆2(𝐲2𝐱′

2)−1𝐱′
2𝐲2 + ⋯ + 𝜆𝑛(𝐲𝑛𝐱′

𝑛)−1𝐱′
𝑛𝐲𝑛 (3) 

where, 𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑛) stands for the normalized eigenvalues of the matrix 𝐇 with 

the dominant 𝜆1 = 1, and 𝐲 and 𝐱 are the l.h.s. and r.h.s. eigenvectors, respectively. The 

prime over the vector 𝐱 indicates its transpose. The first or the maximal eigenvalue is 

denoted by 𝜆1 = 1 whereas the second eigenvalue by 𝜆2 and the remainder or 

subdominant eigenvalues by 𝜆𝑛. Since each of the formed matrices is the result of 

multiplication by two vectors, it follows that their respective rank will be equal to one. In 

adding more terms, we merely increase the rank of the resulting matrices according to the 

number of their terms.  

It is of great interest to test if the eigendecomposition of a matrix of input-output 

coefficients and the metric based on the Shannon index give the same effective rank. In 

this case, we argue that by combining these two measures, we arrive at more definitive 

(from a practical point of view) conclusions about the effective rank of the matrix. For 

this reason, in the section below, we introduce an illustration based on actual input-output 

data of the US economy of 2020, the most recent data as of this writing. 

3. An illustrative example based on input-output data of the USA (2020) 

We utilize the more recent input-output table of the US economy of the year 2020 starting 

with the 15x15 sectoral structure of total requirements, or what is the same as the Leontief 
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inverse, [𝐈 − 𝐀]−1.3 The matrix of input-output coefficients 𝐀 is obtained by inverting the 

Leontief inverse and subtracting it from the identity matrix, 𝐈. Thus, we arrive at the 

matrix 𝐇 = 𝐀[𝐈 − 𝐀]−1, that is, the matrix of vertically integrated input-output 

coefficients. Furthermore, we estimate the vector of employment coefficients 𝐥 by 

dividing the sectoral wages by the respective output both available in the commodity by 

industry table of the same source. We adjust these findings by dividing by the economy-

wide average wage as this is given by the social security administration 

(https://www.ssa.gov). The workers consumption goods vector 𝐛 is obtained by 

multiplying the so-obtained average money wage times the share of consumption goods 

in the total of each sector. With the help of these vectors and matrices (see Tsoulfidis 

2021, 2022, and the literature cited there) we estimate the actual trajectories through the 

following formula 

𝐩 = (1 − 𝜌)𝐯[𝐈 − 𝐇𝑅𝜌]−1 (4) 

where 𝜌 ≡ 𝑟/𝑅 is the relative rate of profit, that is, the ratio of the rate of profit, 𝑟 

corresponding to the reciprocal maximal eigenvalue of the matrix 𝐀[𝐈 − 𝐀 − 𝐛𝐥]−1 and 

𝑅, the maximal rate of profit corresponding to the reciprocal eigenvalue of matrix 𝐇. 

Finally, 𝐯 stands for the vector of labor values 𝝀 = 𝐥[𝐈 − 𝐀]−1 which obtain their 

monetary expression (direct prices), when they are normalized according to 𝐯 =

𝝀(𝐞𝐱)(𝛌𝐱)−1, where 𝐞 is the row (1x15) summation vector.  

For reasons of clarity of presentation and economy in space, in Figure 1 below we 

select to display eight out of our fifteen price curves for illustrative purposes. In each of 

the panel of eight graphs we also display the three approximations (linear, quadratic and 

cubic) according to relation (3). In the panels of graphs of Figure 1 we display just a few 

sectors (those with the most curved trajectories except for the last one, which is almost 

linear) for illustrative purposes. On the horizontal axis of each of the graphs, we display 

the relative rate of profit 𝜌, and on the vertical axis the ratio of estimated price p over the 

values 𝐯, or 𝑝𝑖/𝑣𝑖. The straight lines refer to the linear approximations, the dashed black 

lines stand for the square approximation, the red dotted lines represent the cubic 

approximations, finally, the blue line with the round markers stands for the actual 

estimated prices whose paths we want to approximate. The crossing of line of price-value 

equality indicates a change in the characterization of capital intensity (Sraffa 1960). 

 
3 The following are the fifteen sectors: 1. Agriculture etc., 2. Mining, 3. Utilities, 4. Construction, 5. 

Manufacturing, 6. Wholesale trade, 7. Retail trade, 8. Transportation and warehousing, 9. Information, 10. 

Finance, insurance, real estate, 11. Professional and business services, 12. Educational services, health care, 

and social assistance, 13. Arts, entertainment, recreation, accommodation, and food services, 14. Other 

services, 15. Government.  

https://www.ssa.gov/oact/cola/central.html
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Figure 1. Linear, Quadratic and Cubic Approximations 
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We find that the linear approximation (as this is judged by the Mean Absolute 

Deviation) is quite satisfactory even in case that one would only accept a relatively 

minimal deviation. The quadratic approximation, in general, is an improvement over the 

linear, even for this small size of input-output description, but one cannot say the same 

with the cubic, which we find, in most cases, excessive and therefore redundant.  

One would be wondering of whether the same answer we would derive through the 

exponential of the Shannon index of entropy. We apply the singular value decomposition 

(SVD) method in the matrix 𝐇. The idea is that there will be subdominant eigenvalues 

negative and complex numbers. They differ from the eigenvalues of the same matrix 𝐇, 

in that they are the positive square roots of the eigenvalues of the matrix 𝐇′𝐇, which are 

no different from those of the matrix 𝐇𝐇′. Our estimates are shown in Table 1 below: 

Table 1. Singular values, Shannon’s entropy and Effective rank. 

Ranking of 

Singular 

Values 

Singular Values 

(1) 

Normalized 

Singular Values 

(2) 

Common 

Logarithms of (2) 

(3) 

The Product 

of (2)x(3) 

(4) 
1 1.266776 0.476572 -0.32187 -0.15339 

2 0.500926 0.188453 -0.7248 -0.13659 

3 0.25281 0.095109 -1.02178 -0.09718 

4 0.171247 0.064425 -1.19095 -0.07673 

5 0.138969 0.052281 -1.28165 -0.06701 

6 0.096752 0.036399 -1.43891 -0.05237 

7 0.073059 0.027486 -1.56089 -0.0429 

8 0.045746 0.01721 -1.76422 -0.03036 

9 0.03557 0.013382 -1.87348 -0.02507 

10 0.024936 0.009381 -2.02774 -0.01902 

11 0.017067 0.006421 -2.19242 -0.01408 

12 0.015397 0.005792 -2.23714 -0.01296 

13 0.008659 0.003258 -2.48711 -0.0081 

14 0.006393 0.002405 -2.61887 -0.0063 

15 0.00379 0.001426 -2.84591 -0.00406 

  Sum: 2.658 1.000   
Shannon 

(S) 
-0.746 

        erank=e-s 2.109 

 

From Shannon's index of entropy, S, whose exponential is equal to 2.109, the effective 

rank of the system matrix is equal to 2, the rank of a matrix is an integer. A result 

absolutely consistent with the approximations through the eigendecomposition, where we 

found only marginal improvements adding the quadratic term whereas the cubic term did 

not improve the approximation in our 15x15 input-output structure, an indication that we 

should not go beyond the quadratic term in dimensions of this size input-output structure. 

The same effective rank equal to two we got by using the absolute eigenvalues instead of 

the singular ones. However, having to choose between the two, the singular values are 

preferred because they contain all the required information. By contrast, in the case of 

eigenvalues, the presence of complex numbers prevents the use of the common 
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logarithms, and by taking the absolute values of these numbers some information may be 

lost, so that in some marginal cases the derived threshold integer may misrepresent the 

effective rank. By contrast, the singular values are always positive, and we can take their 

common logarithms without any loss of information. 

4. Results and their evaluation 

We have also experimented with input-output data of various dimensions for the same 

country and years. The differences we found were in the decimals, which, however, do 

not play any role because at the end the rank must be a one-digit number. More 

specifically, our estimates for the US economy of the benchmark years 2007 and 2012 

showed that the 15x15 dimensions gave that a quadratic approximation would be 

adequate. The higher dimensions (71x71 industries) input-output matrices, when tested 

for the same (2007 and 2012) years (www.bea.gov), gave an effective rank twice higher 

than that of the 15x15 dimensions. However, the spectral decomposition indicated that, 

for all practical purposes, a cubic term is a satisfactory enough approximation. The fourth 

or fifth terms did not improve the approximation (Tsoulfidis 2022). We have also tested 

the 405x405 dimensions input-output data, which gave an effective rank equal to eight. 

We did not, at present, try eigen approximations for these super high input-output tables. 

We have also estimated the old 65x65 tables of the BEA, which gave effective ranks or 

dimensions equal to four. Not surprisingly, the eigen or singular values distribution has 

remained the same over the years.  

The results in the case of matrices of lower dimensions 54x54 of the USA, 2007 and 

2014 (Timmer et al. 2015) were quite similar. In both matrices, we found that the 

quadratic approximation of the price trajectories is more than satisfactory (Tsoulfidis 

2021). In contrast, the cubic and the quartic terms did not add much information, even in 

those trajectories characterized by the highest curvature. These particular trajectories are 

those of the minimal difference between prices and labor values, indicating the closeness 

of their VICCs to the economy-wide average or the standard ratio. The results for the 

other countries, to the extent tested, were no different from those of the US economy. The 

distribution of eigen and singular values displayed a repeated pattern described by the 

exact same parameters of an exponential equation whose fit in the distribution of the 

eigenvalues of all years and countries tested has been extremely good. These results lead 

to the idea that there are certain regularities embedded deeply in the available input-output 

data and they are manifested through the skew distribution of eigen or singular values, 

which in turn determine the effective rank and dimensions of the system matrices. From 

a mathematical point of view, the idea of the effective rank and dimensions and their 

estimation through the above based on the Shannon entropy index is quite reasonable. 

After all, the top few singular values are distinct and quite different from the bulk of 

singular values, and these top singular values are those that compress a lot more 

information than the rest of the singular values combined.  
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Finally, the matrix of fixed capital stock derived through the capital flows tables 

indicated much lower dimensions, and the quadratic term would be more than enough. 

After all, the second eigen or spectral value in these matrices is markedly lower than the 

maximal. Besides, in capital stock matrices, as expected, there are too many rows with 

zero elements. The idea is that neither the consumer goods industries nor services produce 

any capital goods, so their rows are filled either with zeros or with relatively small 

numbers. It is important to point out that the multiplication of the capital stock matrix by 

the Leontief inverse gives rise to a new matrix whose form takes on that of the capital 

stock matrix. In counting the number of zeros in our 65x65 capital stock matrix, we found 

39 rows which, when added to the zeros scattered to the rest of cells, amounted to 61 

percent of total figures of the capital stock matrix, without counting the near-zero 

negligibly small elements (Tsoulfidis 2021, pp.71-78 and 181). 

From our discussion so far follows that both the spectral decomposition and the 

effective rank operate complementary to each other and help us approximate economic 

reality, as this is described in its input-output structure, with solid analytical tools capable 

of extracting its essential features. The hitherto analysis has shown that Samuelson’s 

(1962) OCW description of the economy was an oversimplification, but so was Ricardo’s 

corn model, Marx’s schemes of simple reproduction based on the assumption of equal 

organic composition of capital between departments, and the currently in use economic 

growth models. Our findings of near-linear price trajectories by no means suggest that the 

neoclassical theory is adequate in dealing with real-world features. On the contrary, the 

problems of the marginal productivity theory of income distribution remain. The idea is 

that the possible equality of marginal productivity of a factor production with its payment 

is the result of an identity and not of a causal relationship running from the marginal 

product of capital to its payment, as expected in neoclassical theory (see Shaikh 2016, ch. 

9). Furthermore, the assumption of given endowments with near-perfect substitutability 

and the subjective nature of preferences permeate the whole neoclassical analysis, 

regardless of whether it refers to the pure exchange economy or production, which is 

theorized as indirect exchange. There is a better, by far, alternative couched on the labor 

theory of value that was abandoned for mainly ideological reasons. Our analysis so far 

has shown that for the usual input-output structure of the economy the first two eigen or 

singular values are adequate for the construction of models that mimic the operation of 

the entire economy. In this respect, the principal components analytical method may be 

used and it has been used profitably to this direction (Tsoulfidis and Athanasiadis 2022). 

5. Concluding remarks 

In short, the applied factorization method revealed that the structure of the economies is 

simpler than is usually thought, and a lot of information is compressed in the maximal 

eigenvalue of the system matrices while the remaining eigen- or rather singular-values 

add little additional information. Thus, by limiting ourselves to the first few terms of the 
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eigendecomposition, we obtain a satisfactory approximation of the price trajectories 

consequent upon changes in income distribution. In doing this, we end up with the view 

that the actual economies are not like an OCW. The latter would require equal capital 

intensities between industries, which is another way to say that the system’s matrices 

would have nominal and effective rank equal to one. This does not mean that our multi-

commodity world requires all commodities and dimensions to uncover its structural 

features. In a nutshell, we are dealing with overfitting data and over-dimensional 

representations of the actual economies. Our analysis has shown that the deep laws of 

motion of the system can be laid bare by de-noising our data and meaningfully 

compressing the dimensions of the system to just a few.  
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