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Some recent developments on the explanation of
the empirical relationship between prices and

distribution

Jacobo Ferrer-Hernandez and Luis Daniel Torres-Gonzéalez

March 30, 2022

Abstract

The paper complements recent contributions towards the explanation of the
regularities in the behaviour of prices and capital intensities as an effect of hy-
pothetical changes in the rate of profit in empirical production-price models.
It is shown that theoretical price and capital curves, i.e. prices and capital
values as a function of the rate of profits, depend on the product of the eigen-
values and what we call the eigenlabours —the representation of the labour
vector in the space spanned by the eigenvectors of the input matrix. We report
robust evidence that the eigenvalues by themselves cannot produce the curves
regularly reported in the literature, but rather it is the joint action of the
eigenvalues and the eigenlabours. It is conjectured that the tendency towards
zero of the subdominant eigenlabours is driven by the statistical tendency to-
wards the proportionality between the labour vector and the Perron-Frobenius
eigenvector of the input matrix.

Keywords: Sraffian price models; price-profit rate curves; capital value; spectral

representation; labour vector-Perron-Frobenius eigenvector relation.

JEL Class: B51; C67; D57.



“The key to the movement of relative prices consequent upon a change in the
wage lies in the inequality of the proportions in which labour and means of
production are employed in the various industries. It is clear that if the pro-
portion were the same in all industries no price-changes could ensue, however
great was the diversity of the commodity-composition of the means of production
in different industries.” (Sraffa, 1960, p. 12, our emphasis)

1 Introduction

A growing literature has emerged over the last decade seeking to explain a set
of stylised facts obtained from the computation of production-price models using
information from input-output accounts of actual economies. Across countries and
years, industry price indices maintain a simple relationship with income distribution.
Empirical price curves, i.e., price as a function of the rate of profit, are more often
than not monotonic and are well described by linear or quadratic approximations to
the full curves. Industries’ capital intensities and capital-output ratios are in most
cases nearly linear. Thus, ‘capital’, i.e., the value of produced commodities used as
means of production, bears the same simple empirical relationship with distribution.
In addition, production prices computed at the observed profit rate and direct prices
(prices proportional to total quantities of labour) are remarkably close to each other
across different scalar measures.!

Given the potentially complex relationship between value and the profit rate in
the Sraffian price model and the lack of a priori knowledge to further constrain the
techniques of production (e.g. Schefold, 1976; Pasinetti, 1977, ch. V; Bidard, 2004,
ch. 6),? the stylised facts in empirical price models are unexpected and constitute a
paradox within the literature. These empirical regularities have been connected to
important debates in the theory of value, distribution, and capital such as (i) the em-
pirical likelihood and relevance of the capital paradoxes discussed in the Cambridge
Capital Controversies and (ii) the accuracy of Marx’s algorithm to obtain produc-
tion prices from labour values and the conditions under which profits correspond to

surplus value in long-period positions.?

! These results are robust to the inclusion of fixed capital matrices and the aggregation detail
of industrial classification systems. Another regularity in empirical production-price models is
the near linearity of the wage curve. Because wage curves in terms of the net or gross output
involve information not only from the techniques of production but also from the social output
composition, the constraints advanced in this paper to explain the regularities in price and capital
curves cannot fully explain the near linearity of wage curves. Mariolis and Tsoulfidis (2016b, chap.
3), Tsoulfidis (2021, chaps. 3 and 4), and Shaikh (2016, chap. 9) provide a detailed description of
the literature.

2 The typical constraints in the techniques of production (the nonnegativity, productivity, and
indecomposability, and primitivity of the relevant input matrix) are not sufficient to constrain the
curves.

3 Han and Schefold (2006) and Kersting and Schefold (2021) argue that these regularities
imply a low likelihood of capital paradoxes and a low degree of substitutability. Petri (2021) and
Zambelli (2018) argue otherwise. Others argues that the near-linearity of the price curves represent



There has been important contributions to the identification of the characteris-
tics of the productive structure behind these regularities in price and capital inten-
sity curves. One group of writers* has focused on the characteristics of the input-
coefficient matrices J = /\LHlH and proposes the hypothesis, i.e., the constraint on
the productive structure that explains the stylised facts, of sufficiently small sub-
dominant eigenvalues, Ajs ~ A\j3 ~ --- &~ 0, where A\j; = 1 is the Perron-Frobenius
(P-F) eigenvalue.’ This constraint implies a strong proportionality in the columns
of matrix J.¢ They show that approximately linear price and capital intensity curves
are obtained under sufficiently small subdominant eigenvalues. To lend support to
their hypothesis, they study the eigenvalues of matrices for different countries and
years and find that in every case most of the eigenvalues tend to cluster around zero
with a histogram and rank-plot of their moduli showing a fast rate of decay.”

Closer examination of the computed eigenvalues however raise questions about
this hypothesis. Most of the eigenvalues do cluster around zero, as shown by the fre-
quency distributions of the eigenvalues’ moduli |Ajx| for eight matrices J for the U.S.
economy in plot (a) of Figure 1. Nevertheless, there is an important number of sub-
dominant eigenvalues with considerable magnitude: The cumulative count in plot
(a), Figure 1 shows that on average 15 (between 11-20) subdominant |Azx| > 0.25
in each year. In Mariolis and Tsoulfidis (2018, p. 13), the magnitude of the second
and third eigenvalue (|Aj2|, |As3|) of China, Germany, and the U.S. are (.41, .31),
(.53, .40), and (.48, .48), respectively. Plot (b) in Figure 1 shows that for the 645
economies (43 countries in 15 years) of the World Input-Output Database (WIOD)
the percentage of subdominant eigenvalues with |Ayx|/Az1 > 0.25 fluctuate between
10%-12%. On average, there are 52 industries per economy, so these percentages
correspond to 5.2-6.2 observations per economy, on average.® These numerous sub-
dominant Ay with considerable magnitude can ‘activate’ the nonlinear terms in the

the empirical strength of the labour theory of value (e.g., Shaikh, 1998) and the accuracy of Marx’s
algorithm to derive production prices (Shaikh, 2020, sec. 5). Schefold (2016) derives a new set
of conditions under which the economy’s surplus value coincide with profits, which overlaps with
those required to produce linear wage curves.

* See Bienenfeld (1988, p. 253), Iliadi et al. (2014), Mariolis (2021), Mariolis et al. (2021, chap.
2 and 3), Mariolis and Tsoulfidis (2009, 2011, 2014, 2016b,a, 2018), Shaikh (2016, pp. 410-2, 866)
and Tsoulfidis (2021, chaps. 3 and 4; 2022). Schefold (2013a, p. 1173-4) considers the eigenvalues
of matrix A.

SH=A(I - A)~!, where A is the input-coefficients matrix and Ag; is the P-F eigenvalue of
H.

5 In the extreme case of zero subdominant eigenvalues, J is a rank-one matrix. Theoretical
models take as parameters the techniques of production whereas empirical computations use the
available productive structure in monetary values. We will use the same mathematical symbols for
the parameters in both models.

" E.g., Mariolis and Tsoulfidis (2011), Shaikh et al. (2020), and Torres-Gonzilez and Yang
(2019).

8 Mariolis and Tsoulfidis (2014), Gurgul and Wojtowicz (2015), and Shaikh et al. (2020) show
that the number of eigenvalues with a considerable magnitude tends to increase with the level of
disaggregation.
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(a) Eigenvalues’ moduli for eight years, U.S. economy, (b) Percentage of subdominant variates above 0.25 for
1977-2012. 43 countries.
Figure 1: A\ji are the eigenvalues of matrix J and S are the eigelabours. |- | refers to modulus. Source:

Plot (a), Torres-Gonzalez (2020); Plot (b), authors’ calculations based on the WIOD database, 2016 release.

curves and produce inflections. Thence, the explanation of the observed monotonic-
ity /near monotonicity in price, capital intensities, and capital-output ratios curves
requires additional constraints on the productive structure.

As stated in the epigraph from Sraffa, the curvatures depend on the variability
in the proportions between means of production and labour —the proportions of
the commodity inputs are just one side of the coin. Theoretical curves depend
on the characteristics of both the input-coefficient matrix and its relationship with
the labour-coefficient vector. Consistent with this focus, Torres-Gonzalez (2020)
conducts a spectral representation of the price model and shows that the curves
depend on the eigenvalues Ay, the eigenvectors, and what he calls the eigenlabours
Bk, that is, the coefficients in the representation of the labour-coefficient vector
in the space spanned by the left-hand eigenvectors of the input matrix J. The
eigenlabours (3, capture relevant information on the relationship between the input
matrix and the labour vector. Section 2 shall show that we can get approximately
linear (quadratic) price curves if the Ay.0:’s (A\3.0k’s) are sufficiently small. These
theoretical results show that the first group of authors concentrates on a subset of
the characteristics of the technique of production and leaves out other potentially
relevant elements.

Torres-Gonzalez (2017, 2020) studies the U.S. economy and shows that there is a
statistical tendency of subdominant [, towards zero. He conjectures that this result
is connected to a statistical tendency towards (1) the proportionality of the labour
vector and the P-F eigenvector and (2) uniform capital intensities.® Based on scalar

9 In the extreme case of zero subdominant eigenvalues, labour vector and the P-F eigenvector
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measures of the distance between the labour vector and the P-F eigenvector, Iliadi
et al. (2014, p. 47) conclude that there are “considerable deviations” between them.
In his explanation of the empirical near linearity of the wage curve, Schefold (2013a)
also considers the relationship between the labour vector and the input matrix and
proposes the hypothesis of zero average deviations between the labour vector and
the P-F eigenvector —Section 5 shall provide empirical evidence for this hypothesis.

Sections 3 present evidence that for the WIOD database (i) the eigenvalues Ay
by themselves do not fulfil the requirements for producing the curves consistent with
the observed stylised facts and (ii) it is the joint action of the Ay, and eigenlabours
Br which do meet these constraints. Plot (b) in Figure 1 show that less than .07%
of the subdominant |Ajx8k|/A3181 and |A3,Bk|/A3151 are above 0.25, i.e., less that
1 observation per economy on average (c.f. 10%-12% of Aj./A31). This result owes
much to the magnitude of i, where only between 5%-8% of them are |5i|/f81 > 0.25
(between 2.6-4.2 observations per economy, on average). Section 4 provides robust
evidence that the statistical regularities in the [, are connected with a statistical
tendency towards the proportionality between the labour vector and the P-F eigen-
vector. Section 5 develops some implications of the results for the literature and
Section 6 concludes highlighting the lack of an economic explanation of the stylised
facts of the literature.

2 Theory

2.1 The price system

Consider the standard Sraffian price of production model with no joint production,
no fixed capital, and no land.!" If wages are paid ex-post, then
p=(1+7)pA + wl (1)

where A = [a;;] 2 0 and 1 = [[;] > 0 are the input-coefficients matrix and the labour-
coefficients vector, and w and r are the wage and profit rates. It is assumed that A
is productive, irreducible, primitive, and diagonalizable with n distinct eigenvalues,
which are ordered as 1 > Aa1 > |Aaz2| > -+ > |Aan|, where Aa; is the P-F eigenvalue
corresponding to the positive left- and right-hand eigenvectors y; and x7. The
labour vector is normalised such that the total quantity of labour is one, 1q” = 1,
where q = [¢;] is the gross output.

Define the relative profit rate as p = &, where R is the maximum rate of profit.
We can express system (1) in terms of vertical integration as

are proportional and there are uniform capital intensities.

19 We present the price system following closely Iliadi et al. (2014, sec. II) and Mariolis and
Tsoulfidis (2018, sec. II). For a thorough exposition of the Sraffian price model see, inter alia,
Pasinetti (1977, chap. 5).



p = rpH + wv = ppJ + wv, (2)

where v = 1(I — A)~! > 0 is the vector of vertically integrated (V.I.) labour coef-
ficients, J = %A(I —A)l = /\LmH > 0 is the normalised matrix of V.I. input-
coefficients, and R = /\LHI.“ Define the net output as y? = (I — A)q! =[] > 0.
Hence, the labour normalisation can be expressed as 1 = Iq” = vy”.

By choosing the standard commodity as the numéraire, the wage-profit curve is
w = 1 — p and price curves, i.e., prices p = [p;] as a function of p in the interval

0<p<l1,are

p(p) = (1= p)v[I - pJ]™
=(1—=p)[v+pvI+p*vI*+---]. (3)

2.2 Price-profit rate curves and their determinants

We now present an equivalent representation to equation (3) which will be helpful
to determine the constraints in the techniques of production that shape the price

curves:
p(p) =V + p[vI = v] + p*[VI = v]T + p°[vI = v]T* + - -
=v + pf + p*f2 + p°f - (4)
£ =[f] =vI = ]I =vIJTI(J - 1).

Polynomial coefficients f¢ depend exclusively on the means of production to labour
proportions of all the industries of the economy. For p(p) to be, for example, ap-
proximately linear p(p) & v + pf it is required that p*f? + p*f® +--- ~ 0. Now, we
follow Mariolis and Tsoulfidis (2018, sec. 2.c) and use the spectral representation of
matrix J. Under the assumption of distinct eigenvalues, matrix J can be expressed

as:
1=y ALk T X ALK (5)

k=1 yk,xg k ’
where Ay = diag{\j1,...,A\gn}, A1 = 1, and matrices X and X! contain as

columns and rows respectively the right- and left-hand eigenvectors of matrix J when
normalised such that y;xi = 1. Because y,x; =0 for k # s and k,s = 1,...,n, for

any normalisation of the eigenvectors, we have

q
no\

q_ Ik T
vJ? = 5 FVXL Yk

1 Whereas matrices A, H and J share the same eigenvectors yj, and xf, their eigenvalues differ
but stand in a simple relationship: Apgr = Aar(l — Aax) ! and Agx = (A1) ' Amg. n distinet
eigenvalues imply in matrix A implies that it has n linearly independent eigenvectors y; and xkr.

6



Let us define coefficients 3, = vx} and call them the “eigenlabours”. Because the
P-F eigenvector has positive entries x{ € R and the remaining x{ € C", then
p1 € Ry and fy>2 € C. Hence vJ9 =377, (Af’,k/ykx;‘f) Bryr and A\y; — 1 = 0, so

the polynomial coefficients in (4) are then:

no (Mg —1) o
=2, (;];—Xg))‘%klﬁky’ﬂ' (6)

The degree of the price curve polynomial (4), or the precision of any polynomial
approximation, depends on the size of vectors f¢, which can be measured by their
vector norm ||f9]|, the bounds of which are

/\Jk 1
o< <D ‘ X9 B el (7)
where | - | indicates the absolute value. If we choose as the norm of vector f? the
maximum norm ||f7)| _ := max (| f{],...,[f2]) = | flul, then, for j =1,...,n,
()\Jk

n
0< IS < fta <D

‘ P\ Bk‘ ‘yk’max| (8)

The different expressions of the polynomial coefficients (6)-(8) show clearly that
the shapes of the price curves (4) depend on the eigenvalues Ayx, the eigenlabours
Bi, and the eigenvectors (yx,X.). It can be shown that price curves are constant
p(p) = vif and only if 3 = --- = 8, = 0.!? Linear price curves p(p) = v + pf
are obtained if and only if A\j;x0; = 0 for k£ > 2, but without all Sx>o = 0 (Torres-
Gonzalez, 2020, Section 2.4). Appendix A (Theorems 1 and 2) shows that although
there cannot be exact quadratic or higher order polynomial price curves (only exact
linear curves are possible), sufficient conditions for approximately linear (quadratic)
curves are that Ay, &~ 0 (A\3,0; ~ 0), for k = 2,...,n. Exact linear price curves do
not depend on the scale of the eigenvectors yi, but their polynomial approximations
do.

These constraints on price curves also constrain the curvature of industry’s capital
intensity p(p)H(; /v; and capital-output ratio p(p)H(; /p(p); curves: Industries’

V.I. capital value p(p)H, relative to the V.I. capital value of the standard industry

Am,1, are
p(p)J =vI+pg' +p’g* +p’g> + - - (9)
o n (A — 1)
gq = [g;l] =f4] = fq‘H — Zk:2 W)\gkﬁkyk (10)

Therefore, the constraints that produce approximate linear (quadratic) price curves
also produce approximate constant (non-zero sloped linear) capital value curves:
f7 = g™t ~ 0 for ¢ > 1 (for ¢ > 2) (see the corollaries to Theorems 1 and 2 in
Appendix A).

12 Because A and J are primitive, f¢ cannot be the null vector due to A\ = 1 = \j; for k > 2.

7



Expressions (6)-(8) and (10) show that deriving linear or approximate polynomial
curves only through constraints on the eigenvalues is a particular case of more general
conditions involving the eigenlabours and the eigenvectors. Suppose that \jo ~
A33 ~ 0.5, as in their empirical counterpart, and that the rest of the eigenvalues are
equal to zero, \y4 = --- = Ay, = 0. Then, nearly linear price curves p = v + pf
would be difficult to obtain unless s, 53 &~ 0 and/or y3,y3 ~ 0 so that 0.5055y2 ~
0.583y3 ~ 0.

2.3 Eigenlabours: their meaning and magnitude

The eigenlabours 3y = vx} represent some aspects of the relationship between the
labour vectors (v,1) and the input-coefficients matrices (A,J). On the one hand,

given that v = 1(I— A)~!, the eigenlabours can be expressed as 8 = (I—A)~'x} =
I—OB\kAk’ where oy, = lxg. On the other hand, because the x; are the eigenvectors of

matrices A and J, the eigenlabours 1X = a = || and vX = 8 = k] capture the
linear relationship between the labour vectors (v,1) and the left-hand eigenvectors
of the matrices:

I=aX ' =ayi+) (11)

_ n (0%] n 073
—BX! = - — V. 12
v=0 Byt Bve =1 ot > T VR (12)

If 1 and v are proportional to the P-F eigenvector yq, then Y, , axyr = 0 and
Y i Bryr = 0. Because the eigenvectors yj, are linearly independent, the latter
result can happen if and only if ay>2 = Br>2 = 0. In this and only in this case,
I < v, price curves are constant, and capital intensities are constant and uniform.
Although the eigenlabours [, are affected by the eigenvalues sy, the reduction of
B due to small Aag>o is limited: when Aap = 0, then 8, = ay. Therefore, when
compared with /3, sufficiently small subdominant >, can be postulated as a case
of “strong proportionality” between (v,1) and y;.

The value of the eigenlabours depends on the scale of vectors v and x; and the
angle between them:'?

T V,2k . T n
Br =vx] = vl ka HQCOSGk ,if xp eR "

v, ||xE]], cos ©77, if xI e C,

13 In spite of the dependence of 3, to the scale of the eigenvectors x{, the terms (ykxf)*lﬂkyk

in (6) and (9) and (yxx%) ™18 |lyx| in (7) are invariant to the scale of the eigenvectors. Suppose yj

and xf are arbitrarily scaled. Now, suppose y; and x{ are re-scaled such that y, = exyr and )’(g =

— ST T
T -T — VX — v(epxy )
€xX}, , for €, e, # 0. Hence, B = vX, and yf}%yk = ykick{ Ve = ¢ bl (eryk) = yfﬁ[

eryr)(enxy)
1

the normalisation e = i is selected such that B = 1, then yk;]{ Vi = yklx{ Eik_yk = yf}’:g yk. This

shows that it is not possible to discard the influence of the relationship between the labour vector
v and the eigenvectors x;‘g by choosing a special normalisation of the latter.

Yk- If

8



where ||-||, is the Euclidean vector norm and ;""" and ©,"** are the real and complex-
valued angles between vectors v and x . The angles are bounded by —1 < cos 6, <
1 and 0 < |cosf,™], | cos ©"| < 1 (see Scharnhorst, 2001, p. 96-7). The size of
x} can be set arbitrarily, so if by setting ||xx|l, = 1 for & = 1,...,n, then the
eigenlabours in terms of the ||v||, depend only on the angle between the vectors and

cos 0,k .
k T n
B »Xg cos 0"k if X1 €R (14>
T cos @,k .
VX PV T n
o5t 1 i if x5, €C".

Regarding ||v||,, the labour normalisation 1q" = vy” = 1 implies that ||v||, =
1/ ]|y ||, cos 6. Although ||y”||, and cos#"¥ vary across economies, they are the
same for all (.

Let us set ||x||, =1 for £ =1,...,n and collect them as the columns of matrix
X, as in (5). If the left-hand eigenvectors are obtained as the rows of matrix X!,
then X~ !X = I implies that y;x; =1 and*

1 : T
Iy, = 4 o o E R
2 lek,zk, lf X%E(C” and
. ev,zk .
o< M Nl ) e P = LS| e | i < € R
) ) ) VX
vl = vl Sy A — 1]\ % . if xIeCn.

That is, the magnitude of the polynomial coefficients f? relative to ||v||, does not
depend on the scale of any vector —only on angles and the eigenvalues.

3 Eigenvalues and eigenlabours in the economies of
the World Input-Output Database

Section 2 showed that the polynomial order of the price (4) and capital (9) curves
depends on coefficients f? and g? in (6) and (10). Under the spectral represen-
tation of the price system, these coefficients depend on the the subdominant (i.e,
for k = 2,...,n) eigenvalues /\ggl, eigenlabours [, and eigenvectors y;. A set of
constraints on the subdominant \Y, 8, where introduced to produce polynomial ap-
proximations of order ¢y to price and capital curves (Theorem 2 and Corollary 2,
Appendix A). Now, it is a stylised fact that the curves computed with information
from input-output accounts of actual economies are well approximated by linear or
quadratic functions. Most explanations of these regularities postulate the hypothesis

of sufficiently small subdominant eigenvalues Ay;>2 ~ 0.

14 The constraint ykxf =1 forces their angle to have a zero imaginary part when yy, xg e Cnm.
So, cos O™ = | cos OF"*|.



Sections 3.2-3.3 and the robustness appendix D take the productive structures
of all the economies in the WIOD database and provide robust evidence on the
existence the following stylised facts (SF):

SF1 there is a statistical tendency towards Ajpf8r = 0 and )\ﬁkﬁk = 0 for k£ =
2,...,m.

SF2 in spite of the clustering of subdominant eigenvalues \j; around small values,
there is an important number of observations with a considerable magnitude
which makes them unable to produce by themselves and without any reference
to the eigenlabours [y the statistical tendency in SF'1.

SF3 there is a statistical tendency towards gy = 0 for k = 2,...,n.

Section 5 develops the implications of these and other results. Our empirical
analysis abstracts from the characteristics of the scale of the eigenvectors y; and
the angle formed between y; and xi .

3.1 The database with the productive structures

Here we provide a brief description of the main characteristics of the database. Its
full description and the appropriate transformations of the data can be found in
Appendix B.

Sample. The calculations presented draw from the World Input-Output Database
(WIOD) (Timmer et al., 2016), from which we construct a database with the pro-
ductive structures of 645 economies belonging to 43 countries for a period of 15
years (2000-2014). This sample contains high- and middle-income countries which
account for 86% of the world economy in 2016. Each economy shares a homogeneous
set of 54 industries.

We consider the subset of eight economies for 2011 used in Mariolis and Tsoulfidis
(2018): Australia (AUS), Brazil (BRA), China (CHN), France (FRA), Germany
(DEU), India (IND), Japan (JPN), and the United States (USA) —we refer to this
sample by “MT2011”. When expanding the MT2011 sample to encompass the whole
period from 2000 to 2014, which we call “MT15”. Whenever we aggregate through the
43 countries for the year 2011, we will refer to it as “WIOD2011”. If the aggregation
involves all countries and years, we will use the short-hand “WIOD?”.

Data construction. Leontief’s technical coefficient matrices are constructed ag-
gregating domestic and imported intermediate inputs. In accordance with the rel-
evant literature (e.g. Mariolis and Tsoulfidis 2016b, p. 222; Shaikh 1998, p. 98),
Section 3.2 constructs the skill-adjusted labour-coefficient vector using the compen-

sation received by the persons engaged in production (employees + self-employed)

10



divided by the economy-wide average wage rate. In Section 3.3 and appendices D.2-
D.3 we test the robustness of the results to changes in the labour measurement unit

and use a conventional labour vector comprising only persons engaged.

Normalisations. Right-hand eigenvectors will be normalised as ||xx||, = 1, for
k = 1,...,n. Left-hand eigenvectors y; are obtained as the rows of matrix X1,
where X has as columns the eigenvectors x; (as in (5)). Finally, we normalise the

labour vector so that g7 = L = 1, as in Section 2.1.

3.2 The subdominant eigenvalues )\j;, the eigenlabours [,
and the )\Jkﬁk, and )\%kﬁk

Clustering of the subdominant observations. We begin presenting the evi-
dence for stylised facts SF1, SF2, and SF3 by observing the empirical distribution of
subdominant eigenvalues (Ax), eigenlabours (), and their products (BxAzx, BeA3s)
in Figure 2. Because these variates are complex numbers we represent their frequen-
cies using two-dimensional (2-D) histogram plots, where the X- and Y-axis repre-
sents the real and imaginary component, respectively. Each squared bin contains
the number of observations within that real- and imaginary-component value range.
The colour of the square (in log base 10) represents the number of observations with
that complex value —the darker the colour the more populated that value-range is.
The first eight rows of plots correspond to the MT2011 sample. The last two rows
pool the observations of all countries for year 2011 (WIOD2011) and for all years
(WIOD).

The first characteristic of the 2D histograms is that there is a strong concentration
of observations around zero across parameters, countries and time periods. Most of
the sample is located in a relatively small neighbourhood centred around zero. The
dark blued squares, which denote where most observations are located, are around
the origin. Squares outside the neighbourhood at the origin are mostly populated
with green, yellow, and grey colours, which denote small and null observations.
Hence, only a small proportion of observations lay outside the neighbourhood around
zero. The patterns for the eight countries of the MT2011 sample verify for each of
the 43 countries in the WIOD (see Appendix C.1, figures C.1-C.3). The second
characteristic is that the closer we get to the origin from any direction the more
populated the squares become. That is, the clustering around zero intensifies as we
approach the origin. This is more evident for the highly populated samples MT2011
and WIOD.

In spite that all variates fit this general description, there are differences which
are of paramount importance for the characterisation of price and capital value

curves. While the pattern is particularly strong in the case of Sj, A\jx S, and A%, Sy,
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Figure 2: 2-D histogram of subdominant (k > 2) eigenvalues A3, , eigenlabours (3, and their products
(A3kBk, A3, Bk) for different samples. X- and Y-axis represent the real and imaginary parts of the variate,
respectively. Source: authors’ calculations based on the WIOD database, 2016 release.

where almost their entire mass locates in a tinny neighbourhood around zero, the
same is not true for the eigenvalues Aj;. Eigenvalues display more variability so the
neighbourhood which captures most of the observations is considerably wider than
that of the Bj, AsiBk, and A3, 0x. In addition, there are many more \j; outside
this neighbourhood and with considerable magnitude —e.g., see the \j; along the
positive segment of the X-axis. Therefore, the higher variability in the Ay, coupled
with an important number of observations with a considerable magnitude imply that
Agr cannot be responsible of the statistical tendency towards zero of the Ay, and
A}, Br without any reference to the eigenlabours ;. The eigenlabours 8y contribute
importantly to SF1.

The moduli of the largest observations. We now turn our attention to the
characterisation of the observations outside the neighbourhood around zero. For this,
we obtain the modulus or magnitude of the parameters [Azxl, |k, [NarBel, [N225%|
and consider some descriptive statistics in Figure 3 and Table 1. Figure 3 present
the boxplot of the subdominant observations for the individual countries in the
MT2011 sample (the eight rows in the first horizontal block), and for the aggregate
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Figure 3: Boxplots of the moduli of the subdominant (k > 2) eigenvalues |Ajx|, eigenlabours |8k, and
their products (|AykBk|, [A\5xBx|) for different samples. Source: authors’ calculations based on the WIOD
database, 2016 release.

of countries for each year of the MT15 and WIOD samples (the 15 rows in the second
and third horizontal block).!'® Table 1 presents the median, the interquartile range
(IQR), and the right whisker (RW) of the variates for each of the 43 countries in 2011.
In addition, for each variate o, € (Agk, Bk, AgBk, A3 k) the fourth column presents
, that is, the ratio of

the maximum subdominant magnitude and the dominant, and the sixth column
sub|§k22|

01
Hence, columns 5 and 6 tell how much are the largest d;>2 in terms of d;, a crucial
16

the “dominant” d; observation, the fifth column the —maxg’“ﬂ‘

, where sub|d;>2| denotes the second maximum subdominant magnitude.

statistic for the characterisation of the price and capital value curves.

Based on Figure 3 and Table 1, we can characterise the relatively small propor-

5 A boxplot summarises graphically the shape of a distribution by drawing the median (second
quartile, Q2) within the box set by the first quartile (Q1) and the third quartile (Q3), i.e., the
interquartile range (IQR). Additionally, the whiskers (the vertical bars) pinpoint the extreme limits
of the distribution. Any data point outside these boundaries can be classified as an outlier, and it
is indicated as a fully drawn point. The left whisker (LW) corresponds to the maximum of Q1 -
1.5IQR or the minimum value whereas the right whisker (RW) corresponds to the minimum of Q3
+ 1.5IQR or the maximum value.

16 In general 31 %|fk>2| for k > 2 as we have with eigenvalues A\yj; > |A\ji|. See paragraph “speed
of convergence”.
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tion of observations S, Ajxfk, and )\gkﬁk outside the vicinity around zero found in
Figure 2 as follows: (1) there are only few observations, (2) these can be considered
outliers, and (3) their magnitude is pretty small. This is not the case for the sub-
dominant eigenvalues Aj;: there are many observations outside the neighbourhood
around zero, these observations are not outliers in all cases, and their magnitude is
considerably large.

Consider the variates |A\z;.8¢| and |A3, Bx| for the MT2011 sample. Figure 3 shows
that boxplot’s right whisker, which correspond to the non-outlier maximum value, is
at most 0.005 (for IND and BRA, |Aj;0k|). Table 1 show that for the 43 countries in
2011 the average values of the RW (IQR) for |Az.8:| and [A3, 5| are 0.003 (0.0001)
and 0.0000 (0.0000), respectively. DEU and IND have 4 outliers for |Ayx5k|. The rest
of the samples for both [Az; x| and | A3, 8x| have similar number of outliers. However,
these 3, 4, 5 outliers are a small proportion of the sample for each country-year and,
more importantly, their magnitude is considerably small: their maximum value is
0.03 (DEU and FRA, |A3:8¢|). The boxplots for the variates |Ajx x| and |A3, 3| for
each country-year (figures C.4-C.9) and the descriptive statistics (tables C.1-C.2)
for years 2000 and 2014 in Appendix C.2 tell the same story. The boxplot for the
samples MT15 and WIOD in Figure 3 summarise this characterisation: the right
whiskers are indistinguishable from zero and the maximum outliers for |A\y;0)| and
|A2,5Bk| in the 645 economies are around 0.1 and 0.0875, respectively.

These regularities of the largest subdominant |Aj;0x| and |A3,Gk| relate quite
differently with the eigenlabours |5x| and the eigenvalues |A\jx|. Whereas the |SB>o]
have a similar behaviour, the |Ajz>2| differ considerably. There are many |Ajx>s
and with a considerable magnitude compared with the |fj>2|. Consider the MT2011
sample. The RW of the |Bg>2| locate between 0.01 (USA) and 0.08 (IND) whereas
those for the |A\jr>2| locate between 0.18 and 0.37. For the 43 countries in 2011,
the average RW for |fy>2| is 0.0033 vis-a-vis 0.312 for |Ajx>2| (see Table 1). When
considering the MT15 and WIOD samples, the RW for the |A\j;>2| seem to be no
less that 0.3 vis-a-vis the |fr>2| which is no greater than 0.05. In 2011, JAP and
the USA have three outliers |[Ajx>2| > 0.4. Table 1 show that for the 43 countries
in 2011 the average |\j2| and |Az3| equal 0.53 and 0.4, respectively. For the WIOD
sample, the outliers of |A\jx>2| reach magnitudes between 0.5 and 0.75 whereas the

maximal |fy>2| seem to be less than 0.17.

Speed of convergence. We now compute the moduli of the eigenlabours || and
the eigenvalues |Aj| in terms of their “dominant” observation |/3;| and Aj; in order
to compare their speed of convergence towards zero and provide further evidence in
favour of SF'2-SF3. We use the rank-plot of the normalised moduli of the eigenvalues
A3x/A31 = Agi and eigenlabours |S|/ 51 for the eight countries in the MT15 sample
in Figure 4 and the fourth and fifth columns for |A\y;| and |fx| in Table 1. Appendix C
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Figure 4: Rank plot of the moduli of the eigenvalues |[Ajx|/As1 and the eigenlabours |85 |/S1 for 8 countries
and 15 years (2000-2014). Y-axis scale is in log base 10. Source: authors’ calculations based on the WIOD
database, 2016 release.

shows the rank-plots for the 43 countries (figures C.10 and C.11) and the descriptive
tables for years 2000 and 2014 (tables C.1 and C.2). With this evidence we shall
show that for the vast majority of the economies the || display either faster rates
of convergence towards zero than those of the |Ajx| or at least similar rates for the
first observations —the observations with the largest values.

The motivation for this exercise is twofold. Firstly, so far we have studied the
statistical characteristics of the subdominant eigenlabours (B and |5x| with no ref-
erence to the “dominant” 5y = |f1]. This is not the case for the eigenvalues where
the A\jg>2 = Agk>2/Az1. The B € R but, in contrast with 1 = A\y; > Ajp>2, the

By are not bounded from above. In addition, the sequence (1, |5, ..., |B,| is not
monotonically non-increasing, so in general we do not have 31 > |Gs| > -+ > |3,
as we have A\y; > |Ag2| > -+ > |Agn|. There might be cases where for some k > 2

we have [B] > (1.7 Therefore, it is relevant to study the |Bp>s|/B81. Secondly,
the rank-plot has been widely used by the literature in the study of |Ajx| and in
advocating the existence of sufficiently small Aj;>2. By studying the rank-plot of
both the |Ajx| and |5x| we can evaluate the speed of convergence of |Ajx| and |S5y|
on the same footage.

Each line in Figure 4 represents the rank-plot for one sample, i.e., one country-
year-variate. The Y-axis represents the value of the |Ajx| and |5;|/51 and the X-
axis represents the ordering from left to right of the variates defined as follows:
For each sample, the first value is 1 = |[A\j1|/A51 = |51|/B1. The rest of the series

7 For most of the economies, 81 > |Br>2|. The grey rows in Table 1 show where this do not
hold.
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takes the remaining n — 1 observations (|Agx>2| or |Br>2|/f1) and arranges them in
decreasing order. The resulting lines are monotonically non-increasing. The X-axis
scale is in logarithms, to zoom in on the first observations, the ones with the largest
magnitudes.

Figure 4 shows that both [A5x| and ||/ 51 are subject to a fast rate of convergence
with a remarkable time persistence. Starting from a value of 1, the second term drops
abruptly and the remaining of the observations continue their reduction at fast rates
such that they reach a narrow region of small values pretty fast. Plots in Appendix
C.4 show the same patterns for the 43 countries.

When comparing the trends between the |Ajx| and the |Sk|/f1, for the vast ma-
jority of the 645 economies the rate of convergence of |5x|//5; is at least as fast as
that of |A\jx|. In Figure 4, the |8x|/f1 are bellow the |Ajx| for most of the sam-
ple for all countries except for CHN, BRA and IND. For CHN and BRA the |3
outperform the |Aj;| for the observations with the largest values (2-6/8) and then
the order inverts. For IND the |\jx| present a faster rate of decline. The fifth and
sixth columns for |Azx| and |Bx| in Table 1 shows the 2nd and 3rd positions of the
rank-plots for the 43 countries in 2011. They show that for the vast majority of the
countries the rate of convergence of |5x|/f; is considerably larger than that of [Ag:
on average, the 2nd and 3rd positions of the ordering of the |Ajx| are 0.53 and 0.4
vis-a-vis 0.37 and 0.26 for |Bi|/B81.1® These averages represent a decrease of 47%
from the 1st to the 2nd position and 25% from the 2nd to the 3rd position in |Azx]|
vis-a-vis 63% and 31% in |By|.

When looking at the rank-plots of the 43 countries in Appendix C.4 we can
distinguish four groups of countries. In the first one, composed of 24, all the rank-
plots of the eigenlabours are bellow the eigenvalues for the first 15 to 30 positions
(AUS, BEL, BGR, CAN, CZE, DEU, DNK, ESP, EST, FIN, FRA, GBR, ITA, JPN,
LIT, NLD, NOR, POL, PRT, ROU, SVK, SVN, SWE, and USA). In the second
group, composed of 5 countries, almost all years the eigenlabours are bellow the
eigenvalues for the first observations (up to position 8) and from there on either they
are indistinguishable or they flip (BRA, CHN, HRV, RUS, and TUR). In the third
group, composed of 8 countries, the faster rate of convergence alternates between
|Asx| and |Bx| according to the years of the sample (AUT, CHE, IDN, KOR, LVA)
or they are indistinguishable (GRC, HUN, MEX). In the last group, composed of 6
countries, the |A\ji| are bellow the |5| either for all the years (LUX and TWN) or
at least for one year (CYP, IND, IRL, and MLT).

'8 For year 2000 (2014) the second and third position of the ordering of the |Ayx| is 0.52 and
0.41 (0.51 and 0.39) wvis-a-vis 0.29 and 0.23 (0.37 and 0.26) for |5x|/B1 (see Tables C.1 and C.1).
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Figure 5: Scatter plot of the normalised moduli of the subdominant (k > 2) eigenvalues |Ayx|/As1
and |B|/B1 for 8 countries and 15 years (2000-2014). Source: authors’ calculations based on the WIOD
database, 2016 release.

Complementarity. The scatter plot of |A\jx| and |5k|/51 in Figure 5 allows us
to study some aspects of the association between these two variates.!” The plot
shows that there exits a certain degree of complementarity between Ay and ;. For
instance, in AUS and IND, their largest |Ajx| are associated with small |Sg>2|/B1]-
The opposite situation also holds. Many of the largest |5;|//51 for BRA and CHN are
associated with low magnitudes of |A\jx|. Hence, there is some compensating process
in the interaction between Ay, and (5 in which larger values of one are reduced by
the other in the products Az ), and A3, S5y

3.3 Robustness

The novelty of the theoretical relevance of and the statistical regularities in the eigen-

= T _ o
labours B, = vx; = T

results. The paper considers alternatives in the representations of the relationship

compels us to evaluate the robustness of the empirical

between labour vectors and the input matrices as well as in the construction of the
labour vector. However, space limitations forces us only to present a summary of
the conclusions and refer the reader to Appendix D for detailed results.

First, Appendix D.1 shows that subdominant eigenlabours «y and eigenvalues
Aar also present persistent clustering around zero which increases as we approach

19 We cannot associate the pairs (|[Ajl, |Bk|/B1) in Figure 4 because in general we do not have

Br = B2 = = Bl
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zero from any direction. Here we also find that the Aax present less of a stronger
tendency compared with the ap. The main difference between the direct “eigens”
(Aak, i) vis-a-vis the vertically integrated “eigens” (Agx, k) is that there is higher
variability in the former and higher magnitude in their maxima observations.

Second, Appendices D.2 constructs the labour vector without correcting for bias
in the skills of labour. In this case the parameter of interest is 5 again, but the
labour vector 1 is constructed taking persons engaged in production (employees -+
self-employed) instead of the skilled-adjusted labour input. The summary results in
Appendix D.2 and the detailed results in Appendix D.3 supports the same conclu-
sions derived for the skill-adjusted labour vector presented in sections 3 and 4: the
robust evidence on the existence of stylised facts SFI and SF3-SF6.

4 Behind the regularities in the eigenlabours

oy
1-Aak

crucial role in deriving the conditions to obtain low-order polynomial approxima-

and o = lxg play a

Section 2.2 showed that the eigenlabours (3, = vxi =

tions of price and capital value curves (Az;0x ~ 0 and 3,53, =~ 0, for k > 2). In
addition, Sections 3.2 and 3.3 showed that there is a statistical tendency towards
zero of the subdominant Ay and A3, 5 (SF1) and that the eigenlabours aj and
Bi play a crucial role due to their statistical tendency towards zero (SF3). But what
constraints on the productive structure are behind SF3? From Equations (11)-(12)
there are reasons to expect that if the labour vector 1 and the P-F eigenvector y,
were to be closely proportional, then we could expect small a;>9 and Bi>o. With this
theoretical background, we now try to explain the regularities in the eigenlabours
by assessing the degree of proportionality between 1 and y;. We can express the
deviations from proportionality as:

=€ =2l-1A=3"" (O~ Aap)ys
l==v-vl= Z (1 — Ask) By

Ml =n'=1-ay = ZkZQ Yk
]=n"=v — by = ZZZQ Bryr = ZZZQ 1_&}’1@-

AAk
In each case, Lv X y; <= apso=Bisn =0 <= €' =¢=n'=n"=0.
In order to support this conjecture, we study the empirical densities of the coef-
ficients in Equations (15)-(18). Figure 6 presents the densities for the 8 countries of
the MT2011 sample whereas figures C.12-C.15 in Appendix C contain those for the

43 countries. The red lines correspond to the densities of the deviation coefficients
i
drawn with black lines. The grey densities correspond to the quantities of labour

M 77;-, and 77. The densities with the scaled labour coefficients Aa1l; and v; are

19



LIRA

CHA

NH#A,

3 B

o1 a1 2 ra : &I -4
D Chirsapon D Py it n Libwn parin
Figure 6: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
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authors’ calculations based on the WIOD database, 2016 release.
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contained in the direct 1A ;) and the vertically integrated vJ ;) means of production
and the coefficients of the scaled P-F eigenvector ay;; and 31y;;. There are 15 lines
for each colour —one for each country-year-variate.

These figures provide robust evidence on the existence of the following stylised
facts:
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& = Aail; — 1A & =v; — vl n =1 — iy, Ny = v; — Biyij

Country I Q2 o I Q2 o I Q2 o I Q2 o

AUS 0.0003 -0.0009 0.0062 |0.0000 -0.0010 0.0141 |-0.0001 -0.0014 0.0145 |-0.0008 -0.0010 0.0171
DEU 0.0004 -0.0006 0.0063|0.0004 0.0008 0.0149 | 0.0004 0.0002 0.0159| 0.0002 0.0017 0.0207
FRA 0.0008 -0.0001 0.0070|0.0015 -0.0002 0.0160 | 0.0018 0.0002 0.0163| 0.0023 0.0006 0.0203
JPN 0.0032 0.0002 0.0084 |0.0105 0.0071 0.0166 | 0.0103 0.0062 0.0163| 0.0151 0.0132 0.0205
USA 0.0008 0.0005 0.0048|0.0022 0.0026 0.0135| 0.0025 0.0038 0.0157| 0.0030 0.0061 0.0205
CHN 0.0037 0.0019 0.0097|0.0080 0.0050 0.0175| 0.0075 0.0012 0.0164 | 0.0101 0.0075 0.0216
BRA 0.0012 0.0000 0.0071|0.0045 0.0008 0.0161| 0.0051 0.0013 0.0165| 0.0070 0.0038 0.0191
IND 0.0033 0.0000 0.0123|0.0061 0.0000 0.0240 | 0.0059 0.0014 0.0244 | 0.0057 0.0049 0.0278

Average |0.0017 0.0000 0.0081 |0.0042 0.0008 0.0171| 0.0042 0.0012 0.0175| 0.0053 0.0039 0.0216

Table 2: Summary statistics of the coefficients of the deviations vectors £, £V, 1!, and " for 8 countries,
2011. Mean (p), median (Q2), and standard deviation (o). Source: authors’ calculations based on the
WIOD database, 2016 release.

SF) the densities are smooth and unimodal with high degree of symmetry in the
IQR.

SF5 the empirical densities are time invariant.

SF6 the central value of the densities of the deviations are located in a small vecinity
around zero.

It is a remarkable result that the coefficients of each of the three vectors appearing
in Equations (15)-(18) display reduced variability and tend to concentrate around a
central value. As we approach this central value, which corresponds to the mode of
the distribution, there is an increasing concentration of the observations.?’ Although
there is heterogeneity in kurtosis, in location, and in symmetry, most of the densities
conform to some well behaved distribution. Whatever that distribution is, the shape
hardly changes across time, implying the temporal reproducibility of the constraints

in the productive structure. These features characterise stylised facts SF4 and SF¥.
1 ¢v
31550
tred around zero (SF6). This conclusion is corroborated by Table 2 which shows

Figure 6 shows that the deviation coefficients ( 77}, 1Y) are persistently cen-
for the MT2011 sample that their mean and median are extremely low and have
limited variability. One might wonder if the location of the distribution near zero
is the outcome of the small coefficients of the two vectors used to construct the de-
viations. This is nonetheless ill-founded. First, the (I;,v;, 1A ), vy, a1yrj, Biyis)
are all nonnegative which is not true for the deviation coefficients. Second, Table 3
shows that although their median is small, it is considerably higher than the median
of the deviation coefficients. For instance, the average median for §]1- is 0.0000 and
that for Aail; and 1A ;) are 0.0090 and 0.0093 —the black and grey densities are
located considerably to the right of zero. Third, and most importantly, SF6 emerges
irrespective of the similarity of each pair of black and grey densities. For instance,
in FRA—T]} the densities of [; and oy, ; are remarkably similar and their deviations

have a density which is less peaked, more variable, and not-as-close to zero as in the

20 Bimodality in the black and grey densities arises due to some industries with non information.
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case of FRA-£} even though Aail; and 1A ;) have less similar distributions.”!

51:)\A71171A &V =v—-vl] nlzlfalyl n' =v—[Fiyr
Country | Aa1l; 1A, vj vl | a1y l; Biyij vj

AUS 0.0106 0.0096 | 0.0418 0.0440 | 0.0198 0.0180 | 0.0423 0.0440
DEU 0.0097 0.0089 | 0.0372 0.0390 | 0.0160 0.0166 | 0.0344 0.0390
FRA 0.0096 0.0093 | 0.0400 0.0406 | 0.0167 0.0167 | 0.0378 0.0406
JPN 0.0085 0.0104 | 0.0258 0.0389 | 0.0065 0.0168 | 0.0169 0.0389
USA 0.0079 0.0088 | 0.0288 0.0357 | 0.0114 0.0183 | 0.0220 0.0357
CHN 0.0093 0.0101 | 0.0407 0.0482 | 0.0113 0.0147 | 0.0357 0.0482
BRA 0.0091 0.0092 | 0.0329 0.0390 | 0.0133 0.0181 | 0.0270 0.0390
IND 0.0066 0.0078 | 0.0249 0.0326 | 0.0108 0.0147 | 0.0229 0.0326
Average | 0.0090 0.0093 | 0.0349 0.0392 | 0.0133 0.0170 | 0.0306 0.0392

Table 3: Median of the vectors defining the deviation vectors for 8 countries, 2011. Source: authors’
calculations based on the WIOD database, 2016 release.

Stylised facts SF{-SF6 in coefficients (&},£Y, 7, 7)) shows the operation of can-
celling effects between the deviations and point to the statistical tendency of average
deviations towards zero. Figures D.16-D.19 in Appendix D.2 show that SF/-SF6

are robust when using persons engaged as the labour unit.

5 Implications

Summary of empirical results. Section 3 showed that for 43 countries in 2000-
14 there is robust empirical evidence of a statistical tendency of subdominant Ay [
and N3, By towards zero (the stylised fact (SF) 1, SF1). In each economy there is
a clustering of the subdominant \yify and )\%kﬁk in a small neighbourhood around
zero, with an intensifying clustering as we approach the origin from any direction.
Observations outside this narrow region can be considered outliers and only a few of
them exist. For the vast majority of the economies, the magnitude of these extreme
and scarce observations is rather small. The subdominant Aj;>2 and Si>2 present
the same general patterns as the Aj;0; and A3, Sk, although less pronounced and
with important differences between them. These small qualifications are nonetheless
of paramount importance for the properties of price curves.

On the one hand, there are many Ajr>2 with a magnitude considerably greater
than zero (SF2). There is no evidence that the Aji>2 are the sole responsible for the
tendency towards zero of the subdominant Aj; ) and A3, 8x. The By>2, on the other
hand, contributes significantly to achieve the latter tendency. The Si>o display a
stronger tendency towards zero and, for the vast majority of the economies, at a
faster rate than that of the A\jz>o (SF3). Therefore, it is the joint action of the
Ask>2 and Bi>o what is behind the SF1. SFI1 and SF3 complement the regularities

in the productive structures already identified in the literature.

21 A subtraction like [; — a1y1,; does not necessarily correspond to [; and ajy; ; with similar
values.
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In Section 4 it was conjectured that the statistical patterns in the Sy>2 can be
the outcome of the statistical tendency towards the proportionality between the
labour coefficient vectors (1,v) and the left-hand P-F eigenvector y; of matrices
(A,J). The deviations from proportionality cluster around zero and have unimodal
empirical distributions with a limited degree of variability and some symmetry (SF-
SFG).

Identified constraints on the productive structures behind the regularities
in empirical price curves. Section 2 showed that the subdominant eigenlabours
Br>2 can play a role as important as that of the subdominant eigenvalues Ajx>o
eliminating the sources of nonlinearities of price and capital curves. The statistical
tendency towards fr>2 &~ 0 for the 645 economies in the WIOD database (SF3)
confirms their importance, so that the relationship between the labour vector and
the input matrix is a feature of the productive structures that cannot be overlooked.
Based on SF'1-SF3 we conjecture that it is the joint action of the eigenvalues and
the eigenlabours what is behind the monotonicity/near monotonicity in empirical

price and capital intensity curves reported in the literature.??

On some empirical evidence against the close proportionality between
the vectors of labour coefficients (1, v) and y;, the P-F eigenvector of ma-
trices (A,J). Some authors in the literature conclude that there are considerable
deviations between (1,v) and y;.?* This conclusion contrast with (1) the conjecture
on the close relation of proportionality between these vectors in Torres-Gonzalez
(2020) and in this paper and (2) the hypothesis of zero average deviations advanced
by Schefold (2013a, 2016) (see also the next topic).

The latter authors base their conclusion on the empirical evaluation of the devia-
tions between (1,v) and y; using different scalar indicators (e.g. the mean absolute
deviation, MAD). In addition, Tsoulfidis (2021, p. 107) computes correlations and
evaluates the scatter plot of the coefficients of 1 and y; concluding that there is a
“rather weak relationship between the two vectors”. In contrast, this paper conjec-
tures that the statistical properties of the subdominant eigenlabours oy and [, and
the empirical densities of the deviations between (1, v) and y; reflects a close relation
of proportionality between (1,v) and y;. Therefore, future research must address
this seemingly contradictory evidence and how it connects with the explanation of

the empirical regularities in price curves.

22 (Given that constraints Ay;8; ~ 0 (A%kﬂk ~ 0), for k = 2,...,n, are sufficient conditions
for approximately linear (quadratic) price and constant (linear) capital value curves, SF1 provides
robust evidence that prices and capital intensities curves in the economies of the WIOD database
would display nearly linear/quadratic and constant/linear shapes, respectively.

23 “ly1] deviates considerably from [1]” (Iliadi et al., 2014, p. 47). See also Mariolis and Tsoulfidis
(20164, p. 306), Mariolis et al. (2021, p. 122), and Tsoulfidis (2021, p. 106-8).
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Implications of the empirical results to other strands in the literature.

FEvidence in favour of Schefold’s third hypothesis to derive linear wage-profit curves.
Schefold (2013a,b) proposes an explanation of a closely related regularity in empirical
production-price models, namely, the near linearity in wage curves. One of the
hypotheses he advances, his third hypothesis in deterministic systems (see Schefold,
2013a, sec. 4), consists on zero-average deviations between the labour vector 1
and y;. In (17) we defined [n}] = n' =1— ayy: = >_;_, axyx and in Section 4
we studied some of its statistical properties. Let the average value of the 77;- be
=g i = e’

Table 2 reports close to zero values of 7': for the MT2011 sample, the 77! are
between (—0.0001,0.0103), with a mean value of 0.0042. The medians in Table 2
and the density plots in Figure 6 show that the deviations né are centred around
zero, with a limited degree of variability and considerable symmetry. These small
values of 7! are not the outcome of the small scale of the vectors and matrices: On
average, the median values of a1y1; and [; are 0.0133 and 0.0170, respectively, which
are a little more that 11 and 14 times higher than the median of the né- (see Table
3). The location of the density plots of ayy;; and /; in Figure 6 are considerably to
the right relative to the density plots of 77;.

The density plots of the full WIOD database (see figures C.12-C.15 and D.16-
D.19 in appendices C.5 and D.3) provide robust evidence towards Schefold’s third
hypothesis. Given that 7' = Y7, ax¥k, where g, = %Z;‘:l Yr,; we can conclude
that the statistical tendency towards ax>2 =~ 0 reported in Section 3.3 contributes to
the close-to-zero values in 77'. It is left for future research the role played by average
values of the eigenvectors, .

Identification of constraints in productive structures behind the empirical closeness
between production prices and direct prices. One stylised fact in the literature on
empirical prices of production, to which currently there is no explanation generally
accepted, is that scalar measures of the deviations between production prices p(p) =
[p;j(p)] computed at the observed relative profit rate of the economy and prices
proportional to the quantities of embodied labour v = [v,], frequently called direct
prices, are small.?* One widely used measure is the mean absolute deviations (MAD).
Let p(p) —v = x = [x;] be the vector of deviations and y = £ i1 X; their average.
Then,

1

MAD(x) = 523:1 X5 — xI-

4 Tgikara and Mokre (2021) provide evidence for the full WIOD database. See also Mariolis
and Tsoulfidis (2016b, chap. 3) and Shaikh (2016, chap. 9). When the standard commodity y* is
the numeéraire p(p)y® = 1 and total labour equals 1 = vy®, then direct prices equal v.
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Appendix E presents the spectral representation of M AD(x) and shows that
it can be made dependent on four factors: the relative profit rate p = %, the sub-
dominant eigenvalues \j;>2, the subdominant eigenlabours >, and the differences

between the coefficients of eigenvector y, ; and its average value gy, for k =2,...,n.
Specifically,
I n p(Agk — 1) B
MAD(x) = — o )
%) n Zj=1 Zk:Q (1-— p/\Jk)}’kxgﬁk k.5 — Ur] (19)
" (Agr — 1) ’ Br
= - MAD 20
< Y ol o | B | arapgn) 20)

Equations (19) and (20) show the existence of a link between the factors affect-
ing the magnitude of M AD(x) and the shapes in price curves: we can reduce the
sources of nonlinearities in price curves (see (6)) and the magnitude of MAD(x) as
much as we want by reducing f>2. Now, Mariolis and Tsoulfidis argue that “for
realistic values of the relative rate of profit [p] ... the traditional measures of pro-
duction price-labour value deviations (i.e. the MAD, RMS%E and MAWD) ... and
the ‘d- distance’ ... tend to be close to each other” (2010, p. 709; our emphasis).
Hence, the statistical tendency towards fSi>2 ~ 0 found for the U.S. (see Torres-
Gonzalez, 2020) and the WIOD database is one potential constraint producing the
reported small measures of deviations between production prices and direct prices.
Torres-Gonzalez (2020) argues that this pattern in fi>o is related with the statis-
tical tendency of capital intensities to cluster around central values with a limited
variability irrespective of the profit rate. Hence, we might have the inputs to provide
a satisfactory explanation for this stylised fact.

Additional sources dimensionality reduction of empirical multisector systems. It has
been argued in the literature that multisectoral systems of production constructed
with data from the input-output accounts from actual economies can be compressed
into reduced-rank systems without loosing relevant information.?> That is, begin-
ning with the input-coefficient matrix and labour-coefficient vector constructed from
the economic accounts, we can impose constraints on the productive structure con-
sistent with monotonic/near monotonic price and capital curves and obtain low
dimensional n-industries systems which are formally equivalent to traditional 2- or
3-industries theoretical models. In the corn-tractor model, for instance, one industry
produces means of production (“tractors”) whereas the second one only consumption
goods (“corn”). In the low dimensional n-industries system, an equivalent transfor-
mation of the model can make it formally equivalent to this 2-industries model: one

composite industry (the “tractor” industry) producing means of production and the

25 F.g. Mariolis and Tsoulfidis (2016a, pp. 303, 314, 317) and Mariolis and Tsoulfidis (2018, pp.
5, 8, 11). Schefold’s (2013a, sec. 5) deterministic or perturbed ’one-industry systems’ is a closely
related idea.
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other n — 1 industries producing consumption commodities.

The empirical results from the WIOD database imply that the statistical struc-
ture allowing the efficient information compression does not come only from the
strong proportionality between the columns of matrix J, but also from the suffi-
ciently strong proportionality between 1 and y;. The empirical evidence for low-

dimension models is more robust now.

6 Conclusions

The analysis of the production-price model showed that the behaviour of industries’
prices and capital value as an effect of hypothetical changes in distribution, i.e.,
price an capital curves, depends not only on the characteristics of the eigenvalues
of the input matrix, but also on the relationship between the labour vector and
this matrix. Based on these theoretical results, the paper studied 43 economies for
15 years from the WIOD database and showed that in every case the conditions
for price and capital value curves to be well approximated by linear or quadratic
functions are given by the statistical tendency towards the proportionality (1) be-
tween the columns of the input matrices and (2) between the labour vectors and the
Perron-Frobenius eigenvectors of the input matrices. There is no evidence that the
statistical behaviour of the eigenvalues, by themselves, can produce the monoton-
ic/near monotonic curves that are persistently observed. The empirical regularities
in these curves must be driven by the empirical regularities in the proportions be-
tween means of production and labour of all industries —not only in the proportions
of the means of production. Hence, the paper generalises the characterisation of the
curves from previous work in the literature and complements their set of constraints
responsible for the empirical regularities.

While advances have been made in the identification of constraints in the produc-
tive structure behind the empirical regularities in price models and in alternative
representations of these constraints (in terms of vertical integration, normalised
general coordinates, and control systems), the economic explanation for the stylised
facts has largely been disregarded. Why are the columns of the input matrices
highly proportional? What market forces, innovation restrictions, and behavioural
features of agents constrain the productive structure in such a way that the labour
vector and the P-F eigenvector of the matrix are highly proportional? It is clear that
technical change has been constrained in such a way as to produce the set of stylised
facts reported in the paper and elsewhere. But why and how? These stylised facts

must be considered in the construction of this economic explanation.
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A Polynomial approximations to price and capital

value curves

The following results are developed from Bienenfeld (1988). A preliminary version
of them were introduced in Torres-Gonzalez (2020).

Let us re-express price curves (4) as
p(p) =v+pf +--+ p°f? +dy, (A1)

where dg, = Zs o1 p'T° is aseries and go € {1,2,...}. The exact or approximated
order ¢y of the price polynomial depends on the characteristics of d, , in particular
if dgy =0 or dy, = 0.

The first thing to notice is that the succession p?f? is convergent, i.e., hI_El pif? =
q—+00

q0°

0. This convergence is secured by two factors. First, given that 0 < p = = < 1,
then lim p? = 0. Second, because 1 = A\y; > |A\jx| > 0, for & > 2, this 1mphes

q—+00

q
that 0 = y,J —y; = y1(J — I) and because lim J? = lim Y ,_, }%x{yk =
k

q—+o00 q——+00
qggrnoo Y1X Xl Y1 + hm Zk 2y xT kyk 1TXl Y1, sO
T
' 74— -y _ VX - =
qEI-Poof QEI-POO [VJ (J I)] Y1 X{yl (J I)
Second, f¢ > f9*!. This is, because )\Jk > )\2 > ... forall k = 1,...,n, then

(Agk — D)ASBryr > (Mg — 1))\q+1ﬁkyk This 1mphes that if f7 ~ 0, then f‘;’Jrl ~ 0.
In spite of lim p?f? = 0 and £ ~ 0, the series d,, = > .° °f* might not be

q——+00
convergent or the magnitude to which it converges might be considerable. In order

s=qo+1 P

to study the conditions under which d,, = 0 or its norm ||d, || is sufficiently small,
let us express d,, as

dg = Zj:qo—&-l p°t® = Zj:qo—&-l {ps Zk:Q : ;,kXT Uj?ﬁkﬁ}
A
=y 2<Z: (pAs ))—( ;Z ) ey

But |p|, |\sk| < 1, so |pAgk| < 1 and the series in parenthesis converges to

o o i\
Zs:qo (PA3)* = (PAa)™ ), (PAa)* = 1_—&6
Hence,
T w2
= pot! Zk:2 VY
=L wg

(1 — pAsk)yrxi
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We now have the inputs needed to proof our main results on price and capital
value curves. Suppose the price system and the techniques of production described
in Section 2.1. Then,

Theorem 1. There cannot be exact quadratic or higher order polynomial price

curves. Only exact linear price curves are possible.

Proof. Equation (A.2) indicates that the series d, is a linear combination of n—1
linearly independent (eigen)vectors yj # 0, for k = 2,...,n. Therefore, a go-order
price curve polynomial p(p) = v+ pf +--- + p?f? <= d,, =0 <= ==
~n = 0. Constraint y;>2 = 0 for all p € [0, 1) cannot be accomplished by Ay, —1 =10
(matrix J is primitive), but only by A%, 5x = B [1%%, Asx, = 0 for k = 2, ..., n, which
can only happen if A\j;08. = 0. But the vectors with the polynomial coefficients

1,2,...,q9 are
fl _ Zn (>\Jk B 1>B
— e kaZ LYk
s " (A —1)
f° = ZkZQ Tyod A3k BrYk

n (Agr—1 _
f = ZkZQ %Agi 16k}’k-

Hence, quadratic price curves (go = 2) require A3, 3 = 0 which can only happen
if Aj18t = 0 and not all fi>y are zero, which in turn implies that f? = 0, i.e.,
price curves are linear. Cubic price curves (go = 3) require A3, 3, = 0 which can
only happen if A\j;8; = 0 and not all ;> are zero, which in turn implies that
f3 = f2 = 0, i.e., price curves are linear; and so on and so forth. Therefore, for a
g4 >2,d,, =0=d; =0=p(p) =v+pf. (QED.)

Theorem 1 has a similar results on capital value curves.

Corollary 1. There cannot be exact linear or higher order polynomial capital

value curves. Only exact constant capital curves are possible.

Proof. Remembering that y,J = Ajryx, take (9)-(10) and let us re-express capital

value curves as
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p(p)J =vJ+pg+---+ prquo + ey
gq = qu — fq+1

ew= Y =TT =,

— proJrl Z Veyid = thoJrl Z VAIEY e = p<10+1 Z Ouyr = dgot1 (A3)

k=2 k=2 k=2
Agp — 1 1
5k = MAgk = AL B,
k= YAk (1 — P)\Jk)YkXZ Jk Br
Because of (A.3), e;, = dy+1, for g = 0,1,..., and the results from Theorem 1
that dg,d3,--- = 0 = d; = 0 implies that e;,es,--- =0 =€y =0 = p(p)J = vlJ.
(Q.E.D.)

In spite of this, there is plenty of room for polynomial approximations:

Definition 1. A polynomial approzimation of price curves of order ¢y € {1,2,...}
with precision € € R is given when p = v4pf +- - -4 p®f%° +d, and 0 < ||dg || < e

The smaller € the higher the precision of the polynomial approximation. Now,
given (A.2),

n n Mgk — 1
d < qo+1 — | p20+1
ol < 15 32 Pl el = 0732 [

T
YieX;

A5k O] 1yl

(A.4)

therefore,

Theorem 2. Sufficient conditions to obtain a ¢y € {1,2,...} order polynomial
price curves with precision e are that A0k, for k£ = 2... n, are sufficiently small
but not all of them equal to zero.

Proof. Given the assumptions of the price system, the absolute value of subdom-
inant eigenvalues and eigenlabours are bounded by 0 < [Ajx>2| < 1 and 0 < |Bg>sal,
so the limit of (A.4) is

Ay — 1
(1 — pAak)yrxy,

lim fdy | = tim [ 3

A3k Br—0 A3kBr—0

‘)‘g(;c_lAszﬁk‘ lyll = 0.

Hence, for any positive ¢, it is possible to find a technique of production with suffi-
ciently small Ay, and/or fj such that 0 < ||d, || <e. (Q.E.D.)

Age—1

Remark. These are sufficient conditions because the terms Ty
k

and ||y
can also improve or worsen the approximation precision.
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Definition 2. A polynomial approximation of capital value curves of order ¢y €
{0,1,...} with precision e € R} is given when p(p)J = vJ + pg+ - + pPg® + e,
and 0 < ||e,| <e.

Corollary 2. Sufficient conditions to obtain a ¢y € {0,1,...} order polynomial
capital value curves with accuracy e are that /\fﬁﬂﬁk are sufficiently small but not
all of them equal to zero.

Equation (A.3) tells us that e,, = dgy+1 and (A.4) implies that

Ay — 1
(1 — pAsi)yrxi

n
et = llegll < [ S0

1
A8l

If the technique of production is characterised by a sufficiently small Ag%fJFl) Ok

such that 0 < ||[dg+1]| < €, then 0 < ||e,|| < €. Hence, approximate linear price
curves (¢o + 1) = 1 implies approximately constant capital value curves ¢y = 0;
approximate quadratic price curves (go + 1) = 2 implies approximately non-zero
sloped linear capital value curves ¢y = 1; etc. (Q.E.D.)
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B Database construction

B.1 The WIOD database

The World Input-Output Database (WIOD), in its 2016 release, constructed by Tim-
mer et al. (2015), provides estimates of annual time-series of input—output tables
(IOTs) covering 43 countries — 28 EU countries and 15 other major countries in the
world — for the period from 2000 to 2014. The country sample represents up to 86%
of the world economy in 2016 and includes rich- and middle-income economies of
diverse industrial structures and development profiles — least developed countries
are not included in the sample. The list of the 43 economies, and their acronym
used throughout the document (in parenthesis), is given in table B.1.

Australia (AUS) [49] Austria (AUT) [54] Belgium (BEL) [54] Bulgaria (BGR) [54]

. . China, People’s Repub-
Brazil (BRA) [47] Canada (CAN) [51] Switzerland (CHE) [49] lic of (CHN) [47]
Cyprus (CYP) [54] EZ?C}I Republic (CZE) Germany (DEU) [54] Denmark (DNK) [54]
Spain (ESP) [54] Estonia (EST) [54] Finland (FIN) [54] France (FRA) [54]
United Kingdom of
Great — Britain = and | (RO [54] Croatia (HRV) [54] H (HUN) [54]
Northern Ireland (GBR) reece roatia .

[54]

Indonesia (IDN) [47] India (IND) [45] Ireland (IRL) [54] TItaly (ITA) [54]
Republic  of  Korea . .

Japan (JPN) [50] (KOR) [53] Lithuania (LTU) [54] Luxembourg (LUX) [52]

Latvia (LVA) [54] Mexico (MEX) [52] Malta (MLT) [52] Netherlands (NLD) [54]

Norway (NOR) [54] Poland (POL) [54] Portugal (PRT) [54] Romania (ROU) [54]

Russian Federation . .

(RUS) [33] Slovakia (SVK) [54] Slovenia (SVN) [54] Sweden (SWE) [53]

Turkey (TUR) [46] Taiwan (TWN) [54] Ezllted States  (USA)

Table B.1: List of the 43 countries included in the WIOD database, 2016 release, and number of industries
for which there is information available in each country-year.

The base for the construction of the IOTs are the supply and use tables (SUTSs),
which are obtained from official national sources and are adapted to a 56 indus-
tries common disaggregation detail based on the 2008 System of National Accounts
(SNA2008) framework. The input years and the number of releases for which SUTs
are available are uneven and dispersed with the base methodology drawing from the
SNA2008, SNA1993, and International System of Industrial Classification, Revision
3, frameworks. From this information, world industry-by-industry IOTs are con-
structed from which we obtain the IOTs for each country-year. The WIOD includes
fictitious industries which are statistical artifacts to balance the tables. Hence, we
decide to omit industries T (“Activities of households as employers; undifferentiated
goods- and services- producing activities of households for own use”) and U (“Activ-
ities of extraterritorial organizations and bodies”), whose entries are mostly zeros.
Table B.2 gives the list of the final 54 industries.
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ISIC4 code Sector description

A01 Crop and animal production, hunting and related service activities

A02 Forestry and logging

A03 Fishing and aquaculture

B Mining and quarrying

C10_C12 Manufacture of food products, beverages and tobacco products

C13_C15 Manufacture of textiles, wearing apparel and leather products

C16 Manufacture of wood and of products of wood and cork, except furniture; straw and plaiting
materials

C17 Manufacture of paper and paper products

C18 Printing and reproduction of recorded media

C19 Manufacture of coke and refined petroleum products

C20 Manufacture of chemicals and chemical products

C21 Manufacture of basic pharmaceutical products and pharmaceutical preparations

C22 Manufacture of rubber and plastic products

C23 Manufacture of other non-metallic mineral products

C24 Manufacture of basic metals

C25 Manufacture of fabricated metal products, except machinery and equipment

C26 Manufacture of computer, electronic and optical products

Cc27 Manufacture of electrical equipment

C28 Manufacture of machinery and equipment n.e.c.

C29 Manufacture of motor vehicles, trailers and semi-trailers

C30 Manufacture of other transport equipment

C31_C32 Manufacture of furniture; other manufacturing

C33 Repair and installation of machinery and equipment

D35 Electricity, gas, steam and air conditioning supply

E36 Water collection, treatment and supply

E37_E39 Sewerage; waste collection, treatment and disposal activities; materials recovery; other waste
services

F Construction

G45 Wholesale and retail trade and repair of motor vehicles and motorcycles

G46 Wholesale trade, except of motor vehicles and motorcycles

G47 Retail trade, except of motor vehicles and motorcycles

H49 Land transport and transport via pipelines

H50 Water transport

H51 Air transport

H52 Warehousing and support activities for transportation

H53 Postal and courier activities

I Accommodation and food service activities

J58 Publishing activities

J59_J60 Motion picture, video and television production, sound and music; programming and broad-
casting

J61 Telecommunications

J62 J63 Computer programming, consultancy and related activities; information service activities

K64 Financial service activities, except insurance and pension funding

K65 Insurance, reinsurance and pension funding, except compulsory social security

K66 Activities auxiliary to financial services and insurance activities

L68 Real estate activities

M69  MT70 Legal and accounting activities; activities of head offices; management consultancy activities

M71 Architectural and engineering activities; technical testing and analysis

M72 Scientific research and development

M73 Advertising and market research

M74_ MT75 Other professional, scientific and technical activities; veterinary activities

N Administrative and support service activities

084 Public administration and defence; compulsory social security

P85 Education

Q Human health and social work activities

R S Other service activities

Table B.2: List with the 54 industries from the WIOD, 2016 release, considered in the sample. Notes:
Omitted industries are “Activities of households as employers; undifferentiated goods- and services- pro-
ducing activities of households for own use” (T") and “Activities of extraterritorial organisations and bodies”

).

Not every country in the WIOD has information for the 54 industries. The
number of industries with information for each country is given in squared brackets
in Table B.1. The country with less information is Russia (with 31 industries), but
most of the economies fluctuate between 52 and 54 industries.

The WIOD provides in addition socio-economic accounts (SEAs) containing
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Symbol Variable Units

Go Gltoss output by industry at current basic in millions of national currency
prices

i InFermediate inputs at current purchasers’ in millions of national currency
prices

VA Gross value added at current basic prices in millions of national currency

EMP Number of persons engaged thousands

EMPE Number of employees thousands

H EMPE | Total hours worked by employees millions

COMP Compensation of employees in millions of national currency

LAB Labour compensation in millions of national currency

CAP Capital compensation in millions of national currency

K Nominal capital stock in millions of national currency

GO_PI Price levels gross output 2010=100

II_PI Price levels of intermediate inputs 2010=100

VA _PI Price levels of gross value added 2010=100

GO_QI Gross output, volume indices 2010=100

I QI Intermediate inputs, volume indices 2010=100

VA QI Gross value added, volume indices 2010=100

Table B.3: List of the variables in the Socio-Economic Accounts in the WIOD database, 2016 release,
and their description.

industry-level data, under the same industry classification system as the WIOTs,
on the uses of primary inputs (capital and labour), intermediate inputs, gross out-
put, and the components of value added at current and constant prices. Table B.3
provides the full description of the available information. A comprehensive overview
of the sources and methodological choices for the original release can be found in
Dietzenbacher et al. (2013).

The information for the national and international industry-by-industry and sup-
ply and use tables corresponds to current market international dollar prices. The
value data of the SAEs are denoted in millions of national currency. Values were
converted into dollars using the exchange rates provided in the WIOD as an inde-
pendent file.

B.2 Construction of the input-coefficient matrix and the labour
coefficient vector from the WIOD

Empirical computations of production-price models cannot be done using as pa-
rameters the techniques of production. In practice, what is used is the information
from the economies’ productive structure.?! Its first component is the intermediate
inputs cost-shares matrix or Leontief’s technical coefficient matrix. This matrix is
constructed with the information of the n x n table with interindustry intermediate
money valued flows between industries, Z = [z;] and the vector with the money

B See Ochoa (1984, appendices), Chilcote (1997, appendices), Shaikh (2012, Data appendix),
Mariolis and Tsoulfidis (2016b, ch. 2), and Torres-Gonzalez (2020, Appendix B) for detailed
discussions on the construction of databases to conduct empirical computations of production-
price models.
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value of gross output, x = [z;]: Zx ! = [Zx—:] = A = [a;;]. The second component

is the vector with the labour coefficients. This vector is constructed from some es-
timate of the labour input in each industry L = [L;] divided by the gross output of
that industry: Lx~! = [5—]]] =1=[};].

Interindustry flows of intermediate inputs z;;, for ¢,7 = 1,...,n, can involve
transaction between domestic industries zi[j) and imports of domestic industries from

M

foreign industries z;; . In the construction of Leontief’s technical coefficient matrices

A we aggregate the domestic and imported flows: z;; = 25-

abstract from structural differences in the input-output relations that exists between

+zf‘j4 . This means that we

domestic and foreign industries. Therefore, for the construction of matrices Z for
each country-year we take the domestic table Z” and add them the tables with
imported interindustry money flows of intermediate inputs Z* from the remaining
42 countries and the rest of the world estimate.

The constructed database uses two measures of the labour input L;. For Section
3.2, Appendix D.1, and Section 4, we construct the skilled-adjusted labour vector
using the labour compensation of persons engaged in production (LAB) and divide it
by the economy-wide average wage rate, Z—;ilg%. With this, industries’ average
wage rate differentials serve as skill indices which weight the number of persons
engaged in production in each industry.®? As for Appendix D.2, we use as L; the
number of persons engaged in production (EMP) from the SAE. The latter variant
is used as a measure of robustness of the results.

Finally, for each of the 645 economies (43 countries and 15 years) the dimension of
the system in the empirical model is n = 54. We remind that there is no information
for all these 54 industries for the 43 countries. Therefore, some columns/rows of
matrix A and entries in vector 1 will be filled with zeroes. This feature has the
effect that the variates we compute will have some “artificial” zeroes. However, this
outcome will not bias our results. The statistical properties of the variates, as we
shall see in sections 3 and 4 and appendices C and D, are robust to these artificial
zeroes. On average, in every year there are 52.04 industries per countries, so there

are 2,271 observations per year.

B2 See Ochoa (1984, Appendix B.2) ad (Shaikh, 2012, p. 98) for two alternative approaches to
construct a skill-adjusted labour vector. EMP equals employees “EMPE” plus self-employed.
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C Detailed empirical evidence - Skill-Adjusted labour
Vector (1 LAB;)

The following figures and tables expand the selected results presented in Section 3.2.

C.1 Complex plane

Figure C.1. Complex plane density plot of the distribution of eigenvalues Ay,
the eigenlabours Sy, and their interactions, Ay.0; and A3, Bk, for AUS, AUT,
BEL, BGR, BRA, CAN, CHE, CHN, CYP, CZE, DEU, DNK, ESP, and EST.

Figure C.2. Complex plane density plot of the distribution of eigenvalues Ay,
the eigenlabours S, and their interactions, A\jx0 and A3, Bk, for FIN, FRA,
GBR, GRC, HRV, HUN, IDN, IND, IRL, ITA, JPN, KOR, LTU, and LUX.

Figure C.3. Complex plane density plot of the distribution of eigenvalues Ay,
the eigenlabours S, and their interactions, Ajx3; and A3, By, for LVA, MEX,
MLT, NLD, NOR, POL, PRT, ROU, RUS, SVK, SVN, SWE, TUR, TWN,
and USA.

C.2 Boxplots

Figure C.4. Boxplot of the empirical moduli of the subdominant eigenvalues
Ak, eigenlabours Sy, and their interactions, Ay 0 and A%, (3, for AUS, AUT,
BEL, BGR, BRA, CAN, and CHE.

Figure C.5. Boxplot of the empirical moduli of the subdominant eigenvalues
Ak, eigenlabours [, and their interactions, Ay and )\gkﬁk, for CHN, CYP,
CZE, DEU, DNK, ESP, and EST.

Figure C.6. Boxplot of the empirical moduli of the subdominant eigenvalues
A3k, eigenlabours B, and their interactions, AjxS3; and A3, By, for FIN, FRA,
GBR, GRC, HRV, HUN;, and IDN.

Figure C.7. Boxplot of the empirical moduli of the subdominant eigenvalues
A\sk, eigenlabours (i, and their interactions, A0 and A3, By, for IND, IRL,
ITA, JPN, KOR, LTU, and LUX.

Figure C.8. Boxplot of the empirical moduli of the subdominant eigenvalues
A\sk, eigenlabours (3, and their interactions, Az;3 and A3, Sk, for LVA, MEX,
MLT, NLD, NOR, POL, and PRT.
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Figure C.9. Boxplot of the empirical moduli of the subdominant eigenvalues
A3k, eigenlabours (3, and their interactions, Azx B and A%, Sk, for ROU, RUS,
SVK, SVN, SWE, TUR, TWN, and USA.

C.3 Descriptive statistics

Table C.1. Descriptive statistics of the empirical moduli of the subdominant
eigenvalues \jy, eigenlabours i, and their interactions, \jz3; and A3, 3y for
the year 2000, full WIOD sample.

Table C.2. Descriptive statistics of the empirical moduli of the subdominant

eigenvalues \jy, eigenlabours 3, and their interactions, \jz3 and A3, 3y for
the year 2014, full WIOD sample.

C.4 Rankplots

Figure C.10. Rank plot of the empirical distribution of the moduli of the
eigenvalues Ay, and the eigenlabours (g, 54 industries, 2000-2014, for AUS,
AUT, BEL, BGR, BRA, CAN, CHE, CHN, CYP, CZE, DEU, DNK, ESP,
EST, FIN, FRA, GBR, GRC, HRV, HUN, IDN, IND, IRL, and ITA.

Figure C.11. Rank plot of the empirical distribution of the moduli of the
eigenvalues A\j; and the eigenlabours S, 54 industries, 2000-2014, for JPN,
KOR, LTU, LUX, LVA, MEX, MLT, NLD, NOR, POL, PRT, ROU, RUS,
SVK, SVN, SWE, TUR, TWN, and USA.

C.5 Deviations from proportionality

Figure C.12. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for AUS, AUT, BEL, BGR, BRA, CAN,
CHE, CHN, CYP, CZE, and DEU.

Figure C.13. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for DNK, ESP, EST, FIN, FRA, GBR,
GRC, HRV, HUN, IDN, and IND.

Figure C.14. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for IRL, ITA, JPN, KOR, LTU, LUX,
LVA, MEX, MLT, and NLD.
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Figure C.15. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for POL, PRT, ROU, RUS, SVK, SVN,
SWE, TUR, TWN, and USA.
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Figure C.1: Complex plane density plot of the distribution of eigenvalues Ajx, the eigenlabours i, and
their interactions, Ayx Bk and A3, Bk, 54 industries, 2000-2014. Source: authors’ calculations based on the
WIOD database, 2016 release.
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Figure C.2: Complex plane density plot of the distribution of eigenvalues Aji, the eigenlabours i, and
their interactions, Ay B and A%, 8k, 54 industries, 2000-2014. Source: authors’ calculations based on the
WIOD database, 2016 release.
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Figure C.10: Rank plot of the empirical distribution of the moduli of the eigenvalues A\j; and the
eigenlabours (i, 8 countries, 54 industries, 2000-2014. Source: authors’ calculations based on the WIOD
database, 2016 release.
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Figure C.11: Rank plot of the empirical distribution of the moduli of the eigenvalues Aj; and the
eigenlabours fk, 8 countries, 54 industries, 2000-2014. Source: authors’ calculations based on the WIOD

database, 2016 release.
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Figure C.12: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
tions, (5;,53',77},77;’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ), vJ(;), a1y15, B1y15). Source:
authors’ calculations based on the WIOD database, 2016 release.
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Figure C.13: Empirical densities of the coefficients from the three vectors defining the deviation: devia-

tions, (5;,53',77},77;’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ), vJ(;), a1y15, B1y15). Source:
authors’ calculations based on the WIOD database, 2016 release.
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Figure C.14: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
tions, (5;,53«’,77},7)}’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ), vJ(;), a1y15, B1y15). Source:
authors’ calculations based on the WIOD database, 2016 release.
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Figure C.15: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
tions, (5;,53',77},77;’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ), vJ(;), a1y15, B1y15). Source:
authors’ calculations based on the WIOD database, 2016 release.



D Robustness

Sections 2.3 and 3.2 have apprised the relevance of the eigenlabours in conjunction
with the eigenvalues to restrict the techniques of production and the productive
structures. As stated in Section 3.3, this makes necessary to test the results against
alternative labour vectors. To this end, we choose to include two measures of ro-
bustness. Section D.1 changes the parameter of interest by focusing “back” onto
the direct labour vector 1 instead of the vertically integrated one v. That is, the
ay = Ix{ eigenlabour. This should clarify the extend to which the input matrix
contributes to the highly organized patterns reported in 3.2. Section D.2 addresses
the possible bias in the skill-adjusted labour vector by considering a simple metric
of the number of people engaged in production (employees + self-employed). In this

latter case the parameter of interest will be the (.

D.1 The “direct” eigenvalues A4 ; and eigenlabours «; with
the skill-adjusted labour vector

Figure D.1 presents the 2D histograms of the empirical distribution of subdomi-
nant eigenvalues (Az;) and eigenlabours () in an analogous way to Figure 2. This
time, however, we limit the data display in two ways. First, we consider only the
individual countries in the MT2011 sample together with the two aggregations cor-
responding to all countries in 2011 (WIOD2011) and all countries over all years
(WIOD). Second, we concentrate on the direct eigenvalues (Aax) and eigenlabours
(). Tt is possible to observe that the vast majority of the observations are located
in the neighbourhood of zero, which seems robust to different cross-sectional and
time aggregations. As we get closer to the origin, the clustering becomes more and
more populated. This pattern of concentration around zero seems stronger and more
symmetric in the case of the eigenlabours than the eigenvalues (SF%), which show
a higher variability, a larger average magnitude and the presence of an important
number of observations with a considerable magnitude (SF2). This replicates the
conclusions drawn from Figure 2, with the caveat that the degree of variability and
the magnitudes of the maxima are larger in the direct than the vertically integrated
|Ax| and |Bx|. This suggests that the statistical tendency towards zero of the sub-
dominant BpA\zx and A2, By, (SF1) is strengthened by vertical integration but in no
way produced by the interindustry demand structure.

The speed of convergence provides further evidence in favour of SF2 and SFS.
It can be evaluated by looking at the distribution of the moduli of the eigenvalues
|Aax| and the eigenlabours |aj| normalised by their first observations (Aa1,01), as
explained in Section 3.2. Figure D.2 shows the rank plot of the individual countries
in the MT2011 sample, where each line represents one monotonically non-increasing

country-year-variate; to achieve this, the eigenlabours are rearranged in decreasing
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Figure D.1: Complex plane density plot of the distribution of the direct eigenvalues Aaj and eigenlabours
ay 8 countries, 54 industries, 2000-2014. Source: authors’ calculations based on the WIOD database, 2016
release.

order. The X-axis is set in logarithmic scale to increase the resolution in the initial
steps. For the most part, with the exception of CHN, BRA and, in particular, IND,
the |ay| outrun the |Aak| in their movement towards zero. For JPN and BRA the
two cross at around 0.25 and 0.45, respectively, whereas for CHN and IND we cannot
say that the |ay| outperform the |Aax| at any point in the distribution, save a couple
of fringe cases.

We observe a few small differences with regards to Figure 4. First, in general,
the distributions show a slightly lower rate of decline and a higher variability. For
instance, the acceleration peaks for || in between 0.15 and 0.25 in AUS, DEU,
FRA, JPN, USA, CHN and BRA, whereas for |ay| it is around 0.35 for AUS, DEU,
FRA and BRA and 0.25 for USA; CHN cannot be said to change speed at any point
clearly, and IND, in fact, accelerates as it approaches zero. The case is even stronger
for |Aax|, which peaks in between 0.5 and 0.6 for AUS, DEU, FRA and IND, with
no obvious turning point for JPN, USA, CHN and BRA, as opposed to |\x|, where
AUS, DEU, FRA, JPN, USA, CHN, BRA and IND peaked in between 0.3 and 0.5.
Second, we observe several cases in which the eigenvalues and eigenlabours cross at
sufficiently high values, which for countries like JPN, CHN or BRA disappear as we
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Figure D.2: Rank plot of the moduli of the eigenvalues |[Aax|/Aa1 and the eigenlabours |ay|/a1 for 8
countries, 54 industries. Source: authors’ calculations based on the WIOD database, 2016 release.

look at the vertically integrated eigens. Finally, for IND we see that for more than
one year there are subdominant values larger than the first, which can be seen as
the variate spikes initially to then fall below zero after a few steps.

This evidence seems to posit vertical integration as a relevant force in strength-
ening the overall patterns found in the |ay| and [Aax|, but it wrong to uphold this
process as the generator of the particular distributions of |Ajx| and |5x| underlying

the near-linearity of price and capital curves.

D.2 Empirical results with persons engaged (EMP) as the

labour input

The following data seeks to underscore that the fundamental results regarding the
skill-adjusted labour vector hold when we account for the number of people en-
gaged in production (employees + self-employed). Figure D.3 reports the boxplot
of the subdominant observations for the individual countries in the MT2011 sample
together with the 2D histograms of the complex plane distribution of the pooled
MT2011 sample and the aggregation for all countries and years (WIOD). The two
aggregations compare nicely to those reported in Figure 2. We can observe that the
empirical distribution of the subdominant observations of 8, S5 and A3, cluster
strongly and increasingly around zero in the way predicted by SF1 and supported
by the previous evidence. Since the Ay, are the same and the variability of the other
three parameters is on a level with the labour-adjusted vectors, we can conclude
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again that, in accordance with SF2, the Ay, display a larger degree of variability
than 8, contributing less than the latter to the tendency for S\;; = 0 and SA3, = 0.
This characterisation applies to every country. The full extent of the sample can be
checked in Figures D.5-D.7, whose data does not differ much from Figures C.1-C.3.

From the individual boxplots in Figure D.3 we can evaluate the moduli of the
observations outside the neighbourhood around zero for each parameter |Azx|, | k|,
|BkAskl, |BrA3L]. Figures D.8-D.13 and Tables D.1-D.3 provide the complete set of
results. For | 8|, |BkAsk| and |BrA3,| there is only a small proportion of the observa-
tion located outside the vicinity around zero, which can be considered outliers. For
the 43 countries in 2011 the average values of the RW (IQR) for |Azx| and |G| are
0.312 (0.086) and 0.046 (0.037); for |AysBs| and |A2, 3| are 0.005 (0.003) and 0.0001
(0.0000), respectively. Although their magnitude is small, it is still larger for the
vector of persons engaged than for the skill-adjusted vector. In the case of the latter,
the maximum value for CHN is close to 0.06, whereas in the former it stays close
to 0.10. The same applies to most other countries, such as the USA and, specially,
IND, where the maximum value for the persons engaged vector almost doubles that
of the skill-adjusted. For the WIOD2011 aggregation, however, Table D.2 show that
the average || was 0.143 for the persons engaged and 0.15 for the skill-adjusted
vector, with an almost identical standard deviation. Notwithstanding the higher
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variability that |3y produces on |BxAzx| and |BrA3,], it still contrasts sharply with
the larger number and magnitude of the subdominant |Ay|.

AUS DEU FRA JPN
1.00 = 1.00 = 1.00 -
0.75 = 0.75 = 0.75 =
0.50 = 0.50 = 0.50 =
0.25 = S 0.25 - 0.25 -
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1 1 1 1 1 1 1 1
2 8 32 8 32 32
CHN BRA IND
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32 2 8 32 2 8 32

IBul/Br —— AaulAsa

Figure D.4: Rank plot of the moduli of the eigenvalues |Ajx|/As1 and the eigenlabours |Bx|/B1 for 8
countries, 54 industries. Source: authors’ calculations based on the WIOD database, 2016 release.

We can further asses the speed of convergence by relying again on the rank
plot of the individual countries in the MT2011 sample, as reported by Figures D.4
(full results in figures D.14 and D.15); each line represents one country-year-variate
arranged in decreasing order. In this case, we can see that the overall patterns
reported in Figure 4 hold for the persons engaged vector in AUS, DEU, FRA and
USA. In particular, the slope and the inflection point seems to track closely the
previously reported |Ajx| and |Bk| for these countries. We find two main differences.
First, eigenvalues |Ajx| drop faster than eigenlabours |G| in CHN, BRA and IND,
which was not the case for the skill-adjusted vector; other cases are CHE, CYP,
HRV, IDN, IRL, LUX, LVA, MEX, TUR and TWN. JPN has some overlapping but
overall the two trajectories can still be separated, even if less markedly than before.
Second, we find the same phenomena reported in Figure D.2; where the |S|, in that
case the |ag|, showed several subdominant values larger than the first; this obtains
for AUT, CHE, IDN, IRL, LUX, MEX and TWN. For the MT2011 sample and
with persons engaged, the percentage of subdominant |Ay;|/A51 and |Bx|/f1 larger
than 0.25 is 20.5% and 12.2%, respectively. This informs of a similar though weaker
distribution of the [, which improves sensibly by correcting differences in skills in
the labour force.

Finally, we can consider Figures D.16 to D.19 to evaluate how the deviations
from proportionality may vary with a persons engaged labour vector. The red lines
correspond to the densities of the deviation coefficients {;, M 77;-, and ny. The

densities with the scaled labour coefficients Aa1l; and v; are drawn with black lines.

63



The grey densities correspond to the quantities of labour contained in the direct
1A ;) and the vertically integrated vJ ;) means of production and the coefficients of
the scaled P-F eigenvector oy, and B1y1;. There are 15 lines for each colour —one
for each country-year-variate. Visual inspection suffices to find that the densities
are for the most part smooth and unimodal, with a high degree of symmetry in the
IQR (SF4) and remarkably time invariant (SF5). Furthermore, the scale of the
vectors resembles strongly that of Figures C.1 to C.15, and the central values of the
deviations are clearly located in a small vicinity around zero (SF6). These are all
additional pieces of evidence indicating that the results presented in Sections 3 and
4 seem robust, and that the main features of the distribution of subdominant Ay,
Bk, BeAgr and Bk)\?]k are indifferent to the choice of alternative labour vectors.
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D.3 Detailed empirical evidence for persons engaged

The following figures and tables expand the selected results presented in the previous
section.

D.3.1 Complex plane

Figure D.5. Complex plane density plot of the distribution of eigenvalues Ay,
the eigenlabours f, and their interactions, A\z;8; and A3, B, for AUS, AUT,
BEL, BGR, BRA, CAN, CHE, CHN, CYP, CZE,, DEU, DNK, ESP, and EST.

Figure D.6. Complex plane density plot of the distribution of eigenvalues Ay,
the eigenlabours S, and their interactions, A\jz8 and A3, Bk, for FIN, FRA,
GBR, GRC, HRV, HUN, IDN, IND, IRL, ITA, JPN, KOR, LTU, and LUX.

Figure D.7. Complex plane density plot of the distribution of eigenvalues Ay,
the eigenlabours S, and their interactions, Ay 3 and A3, By, for LVA, MEX,
MLT, NLD, NOR, POL, PRT, ROU, RUS, SVK, SVN, SWE, TUR, TWN,
and USA.

D.3.2 Boxplots

Figure D.8. Boxplot of the empirical moduli of the subdominant eigenvalues
A\sk, eigenlabours (3, and their interactions, Ay B and A3, 8y, for AUS, AUT,
BEL, BGR, BRA, CAN, and CHE.

Figure D.9. Boxplot of the empirical moduli of the subdominant eigenvalues
Ak, eigenlabours (i, and their interactions, A\jx 3 and A3, B, for CHN, CYP,
CZE, DEU, DNK, ESP, and EST.

Figure D.10. Boxplot of the empirical moduli of the subdominant eigenvalues
Ak, eigenlabours (i, and their interactions, A\j; () and A3, Bk, for IN, FRA,
GBR, GRC, HRV, HUN, and IDN.

Figure D.11. Boxplot of the empirical moduli of the subdominant eigenvalues
A\sk, eigenlabours (i, and their interactions, A0 and A3, 5%, for IND, IRL,
ITA, JPN, KOR, LTU, and LUX.

Figure D.12. Boxplot of the empirical moduli of the subdominant eigenvalues
Ask, eigenlabours f, and their interactions, AzxB and A3, Sk, for LVA, MEX,
MLT, NLD, NOR, POL, and PRT.

Figure D.13. Boxplot of the empirical moduli of the subdominant eigenvalues
A\sk, eigenlabours (3, and their interactions, Azx3 and A%, Sk, for ROU, RUS,
SVK, SVN, SWE, TUR, TWN, and USA.
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D.3.3 Descriptive statistics

Table D.1. Descriptive statistics of the empirical moduli of the subdominant
eigenvalues \jy, eigenlabours i, and their interactions, A\jz3; and A3, By for
the year 2000, full WIOD sample.

Table D.2. Descriptive statistics of the empirical moduli of the subdominant
eigenvalues \jy, eigenlabours ¢, and their interactions, A\jx0) and A3, B for
the year 2011, full WIOD sample.

Table D.3. Descriptive statistics of the empirical moduli of the subdominant
eigenvalues Ay, eigenlabours (i, and their interactions, Ajy;/[, and /\?,kﬁk for
the year 2014, full WIOD sample.

D.3.4 Rankplots

Figure D.14. Rank plot of the empirical distribution of the moduli of the
eigenvalues Ay, and the eigenlabours [y, 54 industries; 2000-2014, for AUS,
AUT, BEL, BGR, BRA, CAN, CHE, CHN, CYP, CZE, DEU, DNK, ESP,
EST, FIN, FRA, GBR, GRC, HRV, HUN, IDN, IND, IRL, and ITA.

Figure D.15. Rank plot of the empirical distribution of the moduli of the
eigenvalues Ay, and the eigenlabours (., 54 industries; 2000-2014, for JPN,
KOR, LTU, LUX, LVA, MEX, MLT, NLD, NOR, POL, PRT, ROU, RUS,
SVK, SVN, SWE, TUR, TWN, and USA.

D.3.5 Deviations from proportionality

Figure D.16. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for AUS, AUT, BEL, BGR, BRA, CAN,
CHE, CHN, CYP, CZE, and DEU.

Figure D.17. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for DNK, ESP, EST, FIN, FRA, GBR,
GRC, HRV, HUN, IDN, and IND.

Figure D.18. Empirical densities of the deviations from proportionality be-

tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
matrix J, 2000-2014, 54 industries, for IRL, ITA, JPN, KOR, LTU, LUX,
LVA, MEX, MLT, and NLD.

Figure D.19. Empirical densities of the deviations from proportionality be-
tween the labour vectors and the left-hand Perron-Frobenius eigenvector of
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matrix J, 2000-2014, 54 industries, for POL, PRT, ROU, RUS, SVK, SVN,
SWE, TUR, TWN, and USA.
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Figure D.14: Rank plot of the empirical distribution of the moduli of the eigenvalues A3, and the
eigenlabours B, 28 countries, 54 industries, 2000-2014. Source: authors’ calculations based on the WIOD
database, 2016 release.
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Figure D.15: Rank plot of the empirical distribution of the moduli of the eigenvalues Aj; and the
eigenlabours B, 15 countries, 54 industries, 2000-2014. Source: authors’ calculations based on the WIOD
database, 2016 release.

81



¥
dEF 0O OFT  RIX am I r- 1 (=] 1. AEd 27 DA OET 784 B k] (el nos

[1[=TY

. BB

] I L]

T ] i

aEHEEY

i
P e | w

L ] ¥ ] [ ]

1 i i i 1 1 | i i it i ]
] R T 1% o i
o
|
-
-
L "
7} 1] LT |
|
i m
i
Wi

S
=
B
i
=

o B0
I N B
.-IE;

] P

X
i
-
=
-
i

did &3 O0d  LdE

A AL ANE LDaN 81 AD
ﬂ Divd plan D Parareie D Lifpadir g

Figure D.16: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
tions, (ﬁ;,f}’,n},n}’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ;), vJ (), cayrs, Biy1j). Source:
authors’ calculations based on the WIOD database, 2016 release.
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Figure D.17: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
tions, (ﬁj,fj ,77],7)]) labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ;), vJ (), cayrs, Biy1j). Source:
authors’ calculations based on the WIOD database, 2016 release.
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Figure D.18: Empirical densities of the coefficients from the three vectors defining the deviation: devia-
tions, (5;,5}’,77},7)}’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ;), vJ (), cayrys, Biy1j). Source:
authors’ calculations based on the WIOD database, 2016 release.
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Figure D.19: Empirical densities of the coefficients from the three vectors defining the deviation: devia-

tions, (5;,5}’,77},7)}’); labour vector, (Aa1lj,vj,1;,v;); and parameters, (1A ;), vJ (), cayrs, Biy1j). Source:
authors’ calculations based on the WIOD database, 2016 release.
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E The spectral representation of the Mean Abso-
lute Deviation (M AD) indicator of the distance
between production prices p;(p) and embodied

labour Vj.

The MAD is a scalar indicator widely used in the literature to assess the degree of
closeness/proximity between production prices p;(p) of commodity j, computed at
the observed profit rate in the economy, and its quantities of embodied labour v,
often called labour values. Let x; = p,(p) —v; be the difference between production

prices and labour values of commodity j at the relative profit rate p. Then, the
MAD is defined as

1

MADG) = =37 I = Xl (B.1)

where p(p) — v = x = [x;] is the 1 x n vector of deviations between the vectors of
production prices and labour values and y = %Z;;l X; = %XeT is the average of
X;-

Equation (A.1) showed that production prices can be expressed as p(p) = v +
pof + -+ + plofi 4 d, , where d,, = Z::OZO 41 p°f%. Hence, the vector of production
prices-labour values differences equals

= — — 2¢2 e = teo SS:
x =p(r) —v =pf + p*f* 4+ Zszlpf do, (E.2)

where ¢y = 0. Equation (A.2) showed that d,, can be expressed as

n Ay — 1
dq0 — pqo+1 Zk:2 (1 — p/\Jk)kaZ )\?&ﬁkyk,

therefore constraining g = 0 means that A%, = 1, p®*! = p, and

no p(Ask—1)
0 E k=2 (1 — p/\Jk)kaZBkyk X (E.3)
Agp—1 . .
Scalars % B, multiply each coefficient y; ; of vector yj so that
3 p(Agk — 1)
J =2 (1 — p/\Jk)Yk;Xg kYk,j ( )

Equations (E.3) and (E.4) tell us that if » = 0, then p = 0 and x = 0 —
MAD(x) = 0. We can get x = 0 for every profit rate r € [0, R] (for every
p € [0,1]) if and only if B4 = 0.5! We cannot achieve the same result relying
on the subdominant eigenvalues Aj; and the eigenvectors y, —We know that (1)

E-1 'We can achieve this if and only if the labour coefficient vector is proportional to the left-hand
Perron-Frobenius vector. This is the case of equal capital intensities across industries.
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primitivity of matrix J implies that |Ajx>2| < 1 and that (2) eigenvectors y;, cannot
be null vectors.

Let us proceed deriving the spectral representation of the M AD(x) in order to
identify which factors can make this scalar indicator small. Define the mean value

of the coefficients within eigenvector y; as g = + >, yk; = +yre’. Then,

T= L] =+ [Z” pOn—1) g ]

n k=2 (1 — pAgi)yrx,

p(Agk — 1) ~
—Zk21_ 7 Bk

PAIL)Y KX,

Therefore,

_ p Ak — 1) no p(Ak—1)

a (1= pAsk) Yk Xzﬁkyk] Z’“ZQ (1- PAJk)kazﬁkyk

p (Mg —1) _
= . E.5
1_/))%) kxfﬁk Yk, — U] (E.5)

Finally,

1
MAD(x) = 5 > -

7=1
- p Mgk — 1)
_ Z] . Zk ) 1 — pAJk>YkX£B [yk_] 3/ ] .

Based on the multiplicativity and subadditivity properties of the absolute value,

(19)

we can rearrange the sums in (19) and provide an upper bound for the M AD(x)

given by
(Mg — ’ 1 1Ykj — il
MAD ]
b0 < Z’f 2’ " p)\Jk Yka n
(Agk — ‘
= -MAD 20
=S ol [P B arapiy 20)

Equations (19) and (20) show different ways in which we can achieve a zero or
sufficiently small M AD(x):

(1) It seems possible to have a 0 < r = pR < R as small as we want to achieve
a desired small M AD(x) > 0. This constraint has already been identified in
literature (e.g., Mariolis and Tsoulfidis, 2010)

(2) We can also reduce the subdominant eigenlabours ;> as much as we want
to obtain a prescribed maximum M AD(x) > 0, but this time independently
of the rate of profits.

(3) Small variability of the coefficients of the eigenvectors [y ; — yx] and, in par-
ticular, small M AD(yy) for k = 2,...,n can also reduce the magnitude of
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the MAD distance.®? Just like in the identification of the characteristics of
the productive structure behind the regularities in price curves (see the in-
troduction to section 3), it is left for future research the identification of the

statistical characteristics of the eigenvectors in observed economies.

(4) The influence of the terms % on the MAD(x) > 0 depends on the

interaction between the relative profit rate p and the subdominant eigenvalues
Ajk>2. For every economy under study, most of Aj;>2 concentrate around zero.
Hence, for these sufficiently small subdominant Ay, the terms ((1’\;‘/’;—/\;1))

Given that p € [0,1), this result seems to be robust to any admissible p.

~ —1.

We know turn to the Ajp>2 with the highest magnitude (for some economies,
A2 =~ 0.5). Suppose that these Ay are real. On the one hand, as p — 1 the

term % — —1, independently of A\jx. On the other hand, as p — 0 then

% — Agr — 1. The fact that a great number of % ~ —1 and a few

((1’\;';;;3) are different from zero (for real eigenvalues, between -1 and -0.5), the

persistent small values of M AD(x) across economies seems not to be related

with the subdominant eigenvalues.

B2 Given that f;>2 = 0 are both necessary and sufficient conditions for x = 0, it might not be
possible to have M AD(yy) = 0 for k = 2,...,n. Hence, eigenvectors might need to display some
variability.
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